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Abstract

Error correcting codes are essential tools for reliable communication on noisy channels. In

this dissertation, the error correction capability of codes is studied. The number of error

bits guaranteed to correct is less than half the minimum distance of the code. However,

many errors can be corrected even when the number of error bits is beyond half the

minimum distance. Analyzing the error correction capability for this case is significant to

recognize the limitations of codes. The performance of codes on the probabilistic channel

models, such as a binary symmetric channel and an additive white Gaussian noise channel

(AWGNC), is analyzed by the error probability. The error probabilities on these channel

are usually given by upper and lower bounds that use the weight distribution of the code.

The first part of this dissertation investigates the error correction capability beyond

half the minimum distance. The monotone error structure is mainly used for the analysis.

This structure is known for long, but there were only a little studies on it. Helleseth, Kløve,

and Levenshtein used this structure for the analysis of the error correction capability

beyond half the minimum distance and introduced useful concepts: larger halves and

trial sets. In this work, for the first-order Reed-Muller codes, the explicit expressions are

derived for the number of correctable errors of weight half the minimum distance and half

the minimum distance plus one. For general linear codes that satisfy some condition, a

lower bound on the number of uncorrectable errors is derived. The condition is satisfied

by some primitive BCH codes, some extended primitive BCH codes, long Reed-Muller

codes, and random linear codes. The monotone structure, larger halves, and trial sets

play a significant role to derive the results.

The second part of the dissertation studies methods of determining the local weight

distribution of linear codes. It is known that the local weight distribution gives tighter

upper bounds on the error probability over AWGNC than the bounds obtained by us-

ing the weight distribution. In this work, two approaches are considered: theoretical

one and computational one. As a theoretical approach, the relations between the local

weight distributions of a code, its extended code, and its even weight subcode are investi-
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vi Abstract

gated. It is shown that, for some Reed-Muller codes and extended primitive BCH codes,

the local weight distributions of the corresponding punctured codes are straightforwardly

determined from those of them. As a computational approach, an algorithm for com-

puting the local weight distributions is proposed. This algorithm is effective for codes

whose automorphism group is large. Reed-Muller codes and extended primitive BCH

codes have large automorphism groups. Using the algorithm and the relation, the local

weight distributions are determined for some Reed-Muller codes, punctured Reed-Muller

codes, extended primitive BCH codes, primitive BCH codes, and even weight subcodes

of punctured Reed-Muller codes and primitive BCH codes.

Chapters of the dissertation are organized as follows. Chapter 1 introduces the

problems studied in the dissertation and summerizes the results. Chapter 2 describes the

definitions and properties of error correcting codes. Chapter 3 investigates the monotone

error structure of the first-order Reed-Muller codes. Chapter 4 uses trial sets for the anal-

ysis of the error correction capability. For determination of the local weight distributions,

Chapter 5 takes a theoretical approach and Chapter 6 takes a computational approach.

Chapter 7 concludes the dissertation.
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Chapter 1

Introduction

1.1 Error Correcting Codes

In a scenario of error correcting codes, the sender wishes to send a message to the re-

ceiver, but the channel they can use may cause errors in the message. One strategy to

tolerate errors is to add redundancy to the message. Then if the message is corrupted in

transmission, the corrupted message may still retain the information about the original

message. The receiver can recover the original message only from the corrupted message.

A description of how to add redundancy is an error correcting code.

Today an error correcting code is a basic technology to achieve reliable communica-

tion and storage. We can use it where the system considered allows place for the devices

and time for adding redundancy (coding) and recovering from errors (decoding). Since

many coding and decoding methods have been developed so far, system designers are

required to consider which coding and decoding method is proper for their system.

Although there are many codes with good error performance, such as BCH codes,

Reed-Solomon codes, LDPC codes, together with efficient decoding algorithms, analyzing

their error performance for typical channel models with an optimal decoding algorithm

involves some difficulties. Such an analysis reveals the limitation of the code and is

important for ones developing sub-optimal (and efficient) decoding algorithms for them.

One of the basic criteria for the error performance is the minimum distance d of the

code. The minimum distance of the code is the minimum Hamming distance between two

distinct coded messages (codewords) in the code. If the number of corrupted positions in

the received message is less than d/2, the receiver can always correct errors. Therefore,

code with larger minimum distance lead to better error performance.

The d/2 bound is the worst-case error correctability. Namely, there exists at least

1



2 1 Introduction

one uncorrectable error pattern that happens at d/2 positions and the receiver cannot

correctly recover. We expect to correct many errors for the case the number of corrupted

positions is beyond this bound. To characterize the error correction capability for this

case is significant to recognize the limitations of codes. We know empirically that many

of them can be corrected. However, analysis for beyond d/2 is known to be a difficult

task and there is little work and analysis for specific practical codes, such as BCH codes,

and Reed-Muller codes.

Although the minimum distance is one of the important criteria for error performance

of codes, the error performance is determined by the error probability for probabilistic

channels. The most fundamental and practically important probabilistic channel mod-

els are binary symmetric channels (BSC) and additive white Gaussian noise channels

(AWGNC). The error probability is defined as the probability the receiver fails to correct

errors, and is determined by a channel, a code, and a decoder. In our work we consider

maximum likelihood (ML) decoders, which mean optimal decoders for the channel. The

analysis of the error performance with ML decoder is significant for recognizing the limi-

tation of the code and useful for sub-optimal decoding designers. For symmetric channels,

such as BSC and AWGNC, a minimum distance decoder is an ML decoder.

The exact error probability for BSC can be obtained if we know the exact numbers

of correctable errors for each number of corrupted positions, which is equivalent to the

weight distribution of the coset leaders of the codes. The naive algorithm for computing

the weight distribution of the coset leaders requires 2O(n) time, where n is the length of

codewords (the code length). Therefore, it is difficult to compute it by the naive algorithm

even for moderate code length, say n ≥ 128.

Since deriving the exact error probability is intractable, upper and lower bounds on

the probability are used as alternatives. There are two ways for deriving the bounds on the

error probability: the bounds on the number of correctable errors and the bounds on the

probability itself. To analyze and bound the number of correctable errors, the monotone

error structure is a useful concept. Also, for the bounds on the error probability over

AWGNC, the local weight distribution (LWD) of the code is a good alternative for the

(global) weight distribution of the code, which is usually and mostly used for giving the

bounds.

In this dissertation, the monotone error structure and the local weight distributions

are investigated. We will describe them below.
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1.2 Monotone Error Structure

In minimum distance decoding, the decoder finds the nearest codeword to the received

vector. If there are two or more codewords nearest to the received vector, the decoder

can choose any of them. That is, the error probability does not change depending on

the choice of correctable errors. If we decided to correct the lexicographically smallest

error, then correctable errors and uncorrectable errors have the monotone structure. The

monotone structure is the following property: if x is a correctable error then the vector

covered by x is also a correctable error, and if x is an uncorrectable error then the vector

that covers x is also an uncorrectable error, where we say the vector x covers the vector

y if xi ≥ yi for every coordinate i. Although this structure has been known for long (for

example, it is seen in a classical textbook [31, Theorem 3.11]), there was little work using

it.

Zémor [50] showed that, using the monotone structure, the error probability of binary

linear codes over BSC after ML decoding has a threshold behavior.

Helleseth, Kløve, and Levenshtein [19] gave an asymptotic analysis of the error per-

formance beyond d/2. They mainly used the monotone structure of errors in their analy-

sis, and thus showed that the monotone structure is useful for error performance analysis

beyond d/2. The key ingredients of their analysis is larger half and trial set .

If the correctable and uncorrectable errors have the monotone structure, they are

characterized by the maximum correctable and minimal uncorrectable errors. If we know

the set of minimal uncorrectable errors, the entire uncorrectable errors are determined

uniquely. Larger half is introduced for characterizing the minimal uncorrectable errors;

Larger halves of all codewords except all-zero codewords contains the minimal uncor-

rectable errors. Helleseth et al. clarified the structure of larger halves of codewords.

A trial set for the code is defined as the set of codewords whose larger halves contains

the minimal uncorrectable errors. There are two applications of a trial set: giving an upper

bound on the number of uncorrectable errors and a minimum distance decoding. For both

applications, a smaller trial set is desirable. Therefore investigation of minimum trial sets

is significant.

1.3 Local Weight Distribution

To derive the exact value of error probability is difficult for most practical codes. There-

fore, we estimate the probability by upper and lower bounds. For linear codes, many

bounds are proposed so far and many of them use the weight distribution (also referred to
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as weight spectrum or distance profile) of the code. For details of various bounds, see a

survey paper [35]. To determine the weight distribution of linear codes is a difficult task

and is one of the central problems in coding theory. Recently it has been reported that

the local weight distribution of codes can be used to give more accurate bounds on the

error probability over AWGNC [1, 17].

The local weight distribution is defined as the weight distribution of minimal code-

words. The brute-force algorithm for computing the local weight distribution requires

O(n2k2k) time, where n is the code length and k is the length of original messages (the

dimension). On the contrary, that of the weight distribution requires O(n2k) time.

In [3] the local weight distributions of the Hamming codes, the extended Hamming

codes, the second-order Reed-Muller codes, and long random linear codes are derived.

In [28] an algorithm for computing the local weight distributions of cyclic codes are

proposed and the distributions are determined for the BCH codes of length 63. An

algorithm in [28] uses an invariance property of minimality under cyclic permutations.

Since the size of cyclic permutations is O(n), the algorithm reduced the time complexity

to 1/n of that of the brute-force algorithm.

1.4 Contributions and Dissertation Structure

In Chapter 2, before presenting the results, we give a brief description of linear codes

including code modification techniques and typical linear codes we will use.

In Chapters 3 and 4, the error correction capabilities of linear codes beyond half

the minimum distance d/2 are investigated. The monotone error structure is a main

ingredient for the analysis. Analysis for the first-order Reed-Muller codes is done in

Chapter 3. Analysis using trial sets for general linear codes is done in Chapter 4. The

results in Sections 3.4, 3.5,and 3.6 have appeared in [44], [47], and [45], respectively. The

results in Chapter 4 have been presented in [46].

For the first-order Reed-Muller codes, we determine the numbers of correctable errors

of weights d/2 and d/2 + 1. We also determine the weight distribution of the minimal

uncorrectable errors. The first-order Reed-Muller code is a very old and simple code.

However, determining the exact number of correctable errors beyond d/2 is a difficult

task because the rate of the code is low and thus there are many correctable errors.

For general linear codes, we give bounds on the size of minimum trial sets. The

weight distribution of trial sets leads to an upper bound on the number of uncorrectable

errors, and this bound is tight if a given trial set is small. Therefore, bounding the size of
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minimum trial sets yields good bounds on the number of correctable/uncorrectable errors.

We also give a condition under which all minimum weight codewords are in trial sets. If

the condition holds, we can derive a lower bound on the number of uncorrectable errors

of weight d/2. We show that long Reed-Muller codes and long random linear codes meet

the condition. In particular, for Reed-Muller codes with fixed order, the corresponding

upper and lower bounds come close.

Next we consider determining the local weight distributions for linear codes. Two

approaches are studied: a theoretical approach in Chapter 5 and a computational ap-

proach in Chapter 6. The results in Section 6.5.3 have appeared in [48]. The rest of the

results in Chapters 5 and 6 have been presented in [43].

As a theoretical approach, we study relations between the local weight distributions

of a code, its extended code, and its even weight subcode. We derive the way to determine

the local weight distributions of the extended code and the even weight subcode from that

of the original code. We also show the way to determine the local weight distribution

from its extended code in the case the extended code is a transitive invariant code. To

determine the local weight distributions using above three ways, we are required to know

the number of only-odd-decomposable codewords. However, we give a simple sufficient

condition under which there is no only-odd decomposable codeword in the code: the code

has only codewords of weight multiples of four. This condition holds for the Reed-Muller

code of length greater than or equal to 128 and the extended primitive BCH codes of

length 128 and the dimension less than or equal to 57.

As a computational approach, we propose an algorithm for computing the local

weight distribution of a given code using the automorphism group of the code. This

algorithm is effective for a code with large automorphism group. The size of automorphism

group of Reed-Muller codes is 2O(n log n), that of extended primitive BCH codes is O(n2),

that of cyclic codes is O(n). Therefore, our algorithm is effective for Reed-Muller codes

and extended primitive BCH codes.

Using the proposed algorithm, we determine the local weight distributions of the

extended primitive BCH codes of length 128, dimensions 50, 43, 36, and the third-order

Reed-Muller codes of length 128 and 256. From the relations derived in Chapter 5 we

also determine the local weight distributions of corresponding punctured Reed-Muller

codes and primitive BCH codes. The list of codes whose local weight distributions are

determined is shown in Table 1.1.

Chapter 7 concludes the dissertation with a summary of the work and directions of

future work.
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Table 1.1: The list of codes whose local weight distributions are determined.

Code Code length Dimension Reference

Hamming code

Extended Hamming code

Second-order Reed-Muller code

Random linear code

all

all

all

∞

all

all

all

all



















[3]

Primitive BCH code











63

63

127

18, 24, 30, 36, 39, 45

51, 57

36, 43, 50

[28]

[29]

This work

Extended primitive BCH code

Even weight subcode of
primitive BCH code

Third-order Reed-Muller code

Punctured Reed-Muller code

Even weight subcode of
punctured Reed-Muller code

{

{

{

128

127

128

256

127

255

127

255

36, 43, 50

35, 42, 49

64

93

64

93

63

92







































































This work



Chapter 2

Preliminaries

This chapter provides definitions and properties of linear codes. The basics of linear

codes including the monotone structure and the local weight distribution are presented

in Section 2.1. Several code modification techniques and code families used in our work

are shown in Sections 2.2 and 2.3, respectively. Since codes we consider in our work are

binary codes, we define codes over binary alphabet.

2.1 Basic Definitions and Properties

2.1.1 Linear Codes

Let F = {0, 1} be a finite field of size two and Fn = {0, 1}n be a binary vector space of

dimension n. An error correcting code C is a subset of Fn. An element c ∈ C is called

a codeword of C. In transmission with an error correcting code C, the sender chooses a

codeword in C and sends it to the receiver. Then n is the code length of C and log2 |C| is
the dimension of C. The minimum distance d of C is defined as the minimum Hamming

distance between distinct codewords in C. That is,

d = min
c1,c2∈C
c1 6=c2

dH(c1, c2),

where dH(x, y) is the Hamming distance between x and y.

If C is a linear subspace of Fn, C is called a linear code. For a linear code C, the

minimum distance d is equal to the minimum Hamming weight of codewords in C. That

is,

d = min
c1,c2∈C
c1 6=c2

dH(c1, c2) = min
c∈C\{0}

w(c),

7



8 2 Preliminaries

where w(x) is the Hamming weight of x, which is equal to dH(x, 0). A linear code C of

code length n, dimension k, and minimum distance d is referred to as (n, k, d) code C or

simply (n, k) code C. Unless otherwise stated, all codes we use in this dissertation are

linear codes.

Let G be a k×n matrix over F. Then G is called a generator matrix of C if a linear

span of G equals C. That is, if the k rows of G are g1, g2, . . . , gk ∈ Fn, then every c ∈ C

can be written as

c = a1g1 + a2g2 + · · ·+ akgk,

where ai ∈ F for 1 ≤ i ≤ k. The number of linearly independent rows of G corresponds

to the dimension of C.

Let H be an (n − k) × n matrix over F. Then H is called a parity check matrix of

C if its kernel equals C. That is, c ∈ C if and only if

HcT = 0.

2.1.2 Channel, Error Probability, and Decoding

We introduce two channel models: binary symmetric channel (BSC) and additive white

Gaussian noise channel (AWGNC). Both channels are binary input memoryless symmetric

channels.

In BSC, each transmitted bit is independently flipped with a fixed probability p,

where 0 ≤ p < 1/2. When c ∈ C is transmitted over BSC, the received vector y ∈ Fn is

represented as

y = c + e,

where e = (e1, e2, . . . , en) ∈ Fn and ei = 1 with probability p. The vector e is called an

error vector . The weight of e indicates the number of corrupted bits in y. The probability

p is called a cross over probability of BSC.

In AWGNC, a white Gaussian noise is added to each transmitted bit. We assume

transmitted sequences take real values. Therefore, we need to map a binary vector to

a real-valued sequence. We usually use the following mapping function s : F → R such

that s(0) = 1 and s(1) = −1. Thus a codeword c = (c1, c2, . . . , cn) ∈ C is transmitted

as (s(c1), s(c2), . . . , s(cn)). Then when c ∈ C is transmitted over AWGNC, the received

sequence y = (y1, y2, . . . , yn) ∈ Rn is represented as, for every i with 1 ≤ i ≤ n,

yi = s(ci) + zi,
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where zi is a Gaussian random variable with zero mean and variance σ2. The probability

density function of zi is

fzi
(z) =

1√
2πσ2

e−
z
2

2σ2 .

The error probability Pe is defined as the probability that the receiver fails to decode

correctly.

Pe = Pr









⋃

c1,c2∈C
c1 6=c2

Ec1,c2









= Pr





⋃

c∈C\{0}

E0,c



 ,

where Ec1,c2 denotes an event that a codeword c1 ∈ C is transmitted and the decoding

result of the receiver is a codeword c2 ∈ C. The second equality holds if C is a linear

code. Note that Pe depends on a code, a decoding, and a channel model.

A decoding function D : K → C is a function that maps a received vector to a

codeword in C. A field K depends on the channel model; K = F for BSC and K = R for

AWGNC. For memoryless channels such as BSC and AWGNC, a decoding that minimize

Pe is called maximum likelihood (ML) decoding. For symmetric channels such as BSC and

AWGNC, a minimum distance decoding is a ML decoding. A minimum distance decoding

function is

D(y) = arg min
c∈C

d(y, c),

where y is a received vector, a codeword c is mapped by the function s if needed, and the

distance function d(·, ·) depends on a channel model; For BSC the Hamming distance is

employed and for AWGNC the Euclidean distance is employed.

2.1.3 Coset, Syndrome Decoding, and Correctable Errors

Let C ⊆ Fn be an (n, k, d) linear code. Then Fn is partitioned into 2n−k cosets of C,

denoted by C1, C2, . . . , C2n−k ;

Fn =
2n−k

⋃

i=1

Ci and Ci ∩ Cj = ∅ for i 6= j,

where each Ci = {vi + c : c ∈ C} with vi ∈ Fn. The vector vi is called the coset leader

of the coset Ci. Every vector in Ci can be taken as vi.

Let H be a parity check matrix of C. The syndrome of a vector v ∈ Fn is defined as

vHT .
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All vectors having the same syndrome are in the same coset. Syndrome decoding asso-

ciates an error vector to each syndrome1. The syndrome decoder presumes that the error

vector added to the received vector y is the coset leader of the coset which contains y.

The syndrome decoding function D : Fn → C is defined as

D(y) = y + vi if y ∈ Ci.

If each vi has the minimum weight in the coset Ci, the syndrome decoder performs as

a minimum distance decoder. Therefore, in what follows, we assume that a minimum

weight vector is taken as the coset leader for every coset.

Let E0(C) be the set of all coset leaders of C. Then E0(C) is the set of the correctable

errors and E1(C) = Fn \ E0(C) is the set of uncorrectable errors. Since there are 2n−k

cosets,

|E0(C)| = 2n−k and |E1(C)| = 2n − 2n−k.

Define

E0
i (C) = {x ∈ E0(C) : w(x) = i},

E1
i (C) = {x ∈ E1(C) : w(x) = i}.

If the weight of the error vector is less than ⌈d/2⌉, the codeword nearest to the received

vector is the transmitted codeword. We can always correct errors of weight less than⌈d/2⌉.
Thus

|E0
i (C)| =

(

n

i

)

for 0 ≤ i ≤
⌊

d− 1

2

⌋

.

The error probability of C over BSC after ML decoding is given as

n
∑

i=1

pi(1− p)n−i|E1
i (C)|,

where p is the cross over probability of BSC.

2.1.4 Monotone Error Structure

It is known that if we take a lexicographically smallest minimum weight vector as the coset

leader for every coset, then the correctable and uncorrectable errors (in the syndrome

1Here we consider only discrete channels, such as BSC.
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decoding) have the monotone structure. Namely, the coset leader is the smallest vector

in each coset with respect to the following total ordering �:

x � y if and only if

{

w(x) < w(y), or

w(x) = w(y) and v(x) ≤ v(y),

where v(x) denotes the numerical value of x:

v(x) =
n
∑

i=1

xi2
n−i.

The relation v(x) < v(y) means x is lexicographically smaller than y. We write x ≺ y if

x � y and x 6= y.

To describe the monotone structure, we introduce a partial ordering ⊆ called “cov-

ering” such that

x ⊆ y if and only if S(x) ⊆ S(y),

where

S(v) = {i : vi 6= 0}

is the support of v = (v1, v2, . . . , vn). We write x ⊂ y if x ⊆ y and x 6= y.

The monotone error structure is the following property. Let x, y ∈ Fn with x ⊆ y.

If y is a correctable error, then x is also correctable, and if x is uncorrectable, then y is

also uncorrectable.

For two vectors x, y ∈ Fn we write x∩y as the vector whose support is S(x)∩S(y).

Define the left most coordinate of x as l(x) = min S(x).

2.1.5 Local Weight Distribution

For an integer i with 0 ≤ i ≤ n and U ⊆ Fn define

Ai(U) = {v ∈ U : w(v) = i}.

Then the (global) weight distribution of C is the (n + 1)-tuple

(|A0(C)|, |A1(C)|, . . . , |An(C)|).

The local weight distribution of C is defined as the weight distribution of minimal

codewords in C. A codeword c ∈ C is called minimal if c is minimal with respect to

covering ⊆. Namely, c ∈ C is minimal if c′ ⊂ c for c′ ∈ C implies c′ = 0. Let Li(C)
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be the set of minimal codewords of weight i in C. The local weight distribution is the

(n + 1)-tuple

(|L0(C)|, |L1(C)|, . . . , |Ln(C)|).

We denote by C∗ the set of minimal codewords in C.

2.1.6 Automorphism Group of Codes

A permutation of vector coordinate is a rearrangement of coordinates in the vector. Let

{α1, α2, . . . , αn} be a set of coordinate of codewords in C. A coordinate permutation

function π : {α1, . . . , αn} → {α1, . . . , αn} is a function such that
⋃

α∈{α1,...,αn}
π(α) =

{α1, . . . , αn}. We abuse π as a vector permutation function such that π((vα1 , vα2 , . . . , vαn
)) =

(vπ−1(α1), vπ−1(α2), . . . , vπ−1(αn)). We also abuse π as a vector permutation functions for a

set U of vectors such that πU =
⋃

v∈U π(v).

For example, let a permutation π : {1, 2, 3, 4} → {1, 2, 3, 4} such that π(1) =

2, π(2) = 3, π(3) = 1, π(4) = 4. For a vector v = (v1, v2, v3, v4), πv = (v2, v3, v1, v4).

For a set U = {0011, 0111, 1010}, πU = {0101, 1101, 0110}.
An automorphism group of a code C is a set of permutations that permute C into

C itself. Formally,

Aut(C) = {π : πC = C}.

One can verify that Aut(C) forms a group.

Automorphism group of codes is a key property for our algorithms presented in

Chapter 6.

2.2 Code Modifications

We can change the parameters of a code by simply modifying the code. Let C be an

(n, k, d) linear code, G be a generator matrix of C, and H be a parity check matrix of C.

2.2.1 Extended Code

By adding parity check bits for all codewords, we can construct (n + 1, k) code Cex. A

codeword (c1, c2, . . . , cn) ∈ C correspond to the codeword (c1, c2, . . . , cn, cn+1) ∈ Cex where

cn+1 = c1 + c2 + · · ·+ cn. The code Cex is called an extended code of C.

The extension is effective for a code C with odd d. Then Cex is an (n + 1, k, d + 1)

code. That is, the minimum distance increases by one.
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A generator matrix Gex of Cex is obtained from G by adding parity check bits to odd

weight rows in G. A parity check matrix Hex of Cex is obtained from H by lengthen every

row in H by adding 0 in the (n + 1)-th coordinate and adding the all-one row of length

n + 1.

2.2.2 Punctured Code

We can construct an (n − 1, k) code Cpunc by deleting one coordinate for all codewords.

The code Cpunc is called a punctured code of C.

A generator matrix Gpunc (and a parity check matrix Hpunc) of Cpunc is obtained

from G (and H) by deleting one coordinate from G (and H).

2.2.3 Even Weight Subcode

We consider a code C having odd-weight codewords. Note that every linear code either

has both odd and even weight codewords or has only even-weight codewords. We can

construct an (n, k − 1) code Ceven by removing odd-weight codewords from C. The code

Ceven is called an even weight subcode of C.

To obtain a generator matrix Geven, first we reduce G by elementary row operations

to G′ that has only one odd-weight row in the matrix. Then we obtain Geven by deleting

the odd-weight row from G′. A parity check matrix Heven is obtained by adding all-one

row to H .

2.3 Code Families

We show codes families we will use in this dissertation2.

2.3.1 Reed-Muller Codes

Reed-Muller codes are polynomial evaluation codes. A message is some polynomial f or

the coefficients of f . The codeword from a message f is an n-tuple of the evaluations of

f at n points. Namely, the message f is encoded as

(f(α1), f(α2), . . . , f(αn)),

2Since we consider binary codes in our work, we here define code families over binary field. We can

also define these codes over alphabet size q with q ≥ 3.
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where αi for 1 ≤ i ≤ n are the evaluation points. We sometimes refer to a polynomial f

as a codeword (not only as a message).

A “message” polynomial f in Reed-Muller codes is an m-variate polynomial and the

evaluation points are all distinct elements in Fm. The set of m-variate polynomials with

degree at most r is the r-th order Reed-Muller code, denoted by RMm,r. The code length

of RMm,r is 2m, the dimension is 1 +
(

m
1

)

+
(

m
2

)

+ · · ·+
(

m
r

)

, and the minimum distance is

2m−r. Since each variable in f ∈ RMm,r takes a binary value, RMm,r corresponds to the

set of Boolean functions of m-variables with degree at most r.

The automorphism group of RMm,r contains the general affine group. A permutation

πA,b : Fm → Fm in the general affine group is

πA,b :







x1

...

xm






7−→ A







x1

...

xm






+ b,

where A is an invertible m×m matrix over F and b is an m-tuple column vector over F.

The size of the general affine group is

2m(2m − 1)(2m − 2) · · · (2m − 2m−1) ∈ 2O(n log n).

Binary Reed-Muller codes correspond to the Boolean functions. Since f for f ∈
RMm,r represents the negation of f , a codeword 1 + c for c ∈ RMm,r is denoted by c.

2.3.2 BCH Codes

Since a BCH code over F is a subfield subcode of a Reed-Solomon code over Fm, we first

define Reed-Solomon codes. BCH codes and Reed-Solomon codes are also polynomial

evaluation codes.

A message polynomial f in Reed-Solomon codes over Fm is a univariate polynomial

over Fm and the evaluation points is distinct n points in Fm. It is required that n ≤ 2m.

The (n, n− (d − 1), d) Reed-Solomon code is the set of univariate polynomials of degree

at most n − d over Fm. Then the binary subfield subcode of the Reed-Solomon code is

a BCH code. That is, for the (n, n − (d − 1), d) Reed-Solomon code C, a BCH code is

C ∩ Fn. A BCH code is called primitive if n = 2m − 1.

It is known that the BCH code from the (n, n − (d − 1), d) Reed-Solomon code is

an (n, k, d) code with k ≥ n − 1 −m(⌈d/2⌉ − 1). In particular, for even d, we have an

(n, k, d) BCH code with k ≥ n − 1−m(t− 1). A simple and complete proof of this fact

appears in [37].
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Since an extended primitive BCH code has code length n = 2m, the evaluation points

for extended primitive BCH codes are the all distinct points in Fm. The automorphism

group of the extended primitive BCH codes contains the affine group. A permutation

πa,b : Fm → Fm in the affine group is such that

πa,b : x 7−→ ax + b,

where a, b ∈ Fm. The size of the affine group is 2m(2m − 1).

2.4 Remarks

We provide basic definitions and properties of linear codes in this chapter. For more

information on error correcting codes, see [26, 34, 39].

Reed-Muller codes were firstly treated by Muller [30] and Reed [33]. In our work,

the first-order Reed-Muller codes are the target codes of the analysis in Chapter 3 and

Reed-Muller codes appear in Sections 4.3, 4.5, 6.5.3, and 6.6. BCH codes were introduced

by Bose and Chaudhuri [10, 11], and independently by Hocquenghem [20]. In our work,

BCH codes appear in Sections 4.3 and 6.6. The relations of the local weight distributions

between the original code and its modified codes, including the extended code and the

even weight subcode, are treated in Chapter 5.





Chapter 3

Monotone Error Structure in

First-Order Reed-Muller Codes

3.1 Introduction

If the uncorrectable (and correctable) errors have the monotone structure, they are charac-

terized by the minimal uncorrectable (and maximal correctable) errors. Helleseth, Kløve,

and Levenshtein [19] introduced larger halves of codewords to describe the minimal un-

correctable errors.

In this chapter, the monotone structure of the the first-order Reed-Muller codes is

investigated. Let RMm denote the first-order Reed-Muller code of length 2m. RMm is a

(2m, m + 1, 2m−1) code. First, the numbers of uncorrectable errors (and thus correctable

errors) of weights half the minimum distance and half the minimum distance plus one are

determined. Namely, |E1
2m−2(RMm)| and |E1

2m−2+1(RMm)| are determined. The result for

weight 2m−2 was already given in [40]. The approach here does not reveal the structure

of cosets containing weight-2m−2 vectors completely, and is more direct and thus simpler.

After that, the weight distribution of the minimal uncorrectable errors for RMm is derived.

Section 3.2 states the properties of larger halves. Section 3.3 provides the definition

of the first-order Reed-Muller codes and their properties related to larger halves. The

results for the numbers of uncorrectable errors of weight half the minimum distance and

half the minimum distance plus one are presented in Sections 3.4 and 3.5, respectively.

The weight distribution of the minimal uncorrectable errors is derived in Section 3.6.

17
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3.2 Minimal Uncorrectable Errors and Larger Halves

When the set of uncorrectable errors E1(C) has a monotone structure, E1(C) can be

characterized by minimal uncorrectable errors in E1(C). An uncorrectable error y ∈
E1(C) is minimal if there exists no x such that x ⊂ y in E1(C). Let M1(C) denote

the set of all minimal uncorrectable errors in C. Larger halves of a codeword c ∈ C are

defined as minimal vectors v with respect to covering such that v + c ≺ v. Note that

every larger half is an uncorrectable error. The following condition is a necessary and

sufficient condition that v ∈ Fn is a larger half of c ∈ C:

v ⊆ c, (3.1)

w(c) ≤ 2w(v) ≤ w(c) + 2, (3.2)

l(v)







= l(c) if 2w(v) = w(c),

> l(c) if 2w(v) = w(c) + 2.
(3.3)

The condition (3.3) is not applied for the case that w(c) is odd. The proof of equivalence

between the definition and the above condition is found in the proof of Theorem 1 of [19].

Let LH(c) be the set of all larger halves of c ∈ C. For a subset U of C \ {0}, let

LH(U) =
⋃

c∈U

LH(c).

For an even-weight codeword c, the weights of larger halves of c are w(c)/2 and

w(c)/2 + 1 from the condition (3.2). Let LH−(c) and LH+(c) denote the sets of larger

halves of c of weight w(c)/2 and w(c)/2 + 1, respectively. Then LH(c) = LH−(c) ∪
LH+(c). Also let LH−(U) =

⋃

c∈U LH−(c) and LH+(U) =
⋃

c∈U LH+(c) for U ⊆ Ceven.

Define the set of minimal uncorrectable errors M1(C) as the set of uncorrectable errors

v ∈ E1(C) such that u ⊆ v for u ∈ E1(C) implies u = v. The set M1(C) consists of

minimal (with respect to covering) vectors in E1(C), and LH(c) for c ∈ C consist of

minimal vectors in {v : v + c ≺ v}, which is a subset of E1(C). Therefore, the following

holds;

M1(C) ⊆ LH(C \ {0}). (3.4)

Example. Let C = {0000, 1111}. The code C is a (4, 1, 4) code. There are 24−1 = 8

coset leaders. The set of them is E0(C) = {0000, 0001, 0010, 0100, 1000, 0011, 0101} and

the set of uncorrectable errors is E1(C) = {1001, 1010, 1100, 0011, 1011, 1101, 1110, 1111}.
Then the set of minimal uncorrectable errors is M1(C) = {0111, 1001, 1010, 1100}. The
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Figure 3.1: The covering relation among the vectors in E0(C), E1(C), and M1(C) for

C = {0000, 1111}.
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covering relation among the vectors in F4 are depicted by a directed graph in Figure 3.1-

(a). We can see E0(C), E1(C) in Figure 3.1-(b) and M1(C) in Figure 3.1-(c).

3.3 First-Order Reed-Muller Code RMm

3.3.1 Nonlinearity of Boolean Functions and RMm

The binary r-th order Reed-Muller code of length 2m corresponds to the Boolean functions

of m variables with degree at most r. Hence RMm corresponds to the set of affine functions

of m variables. The nonlinearity of a Boolean function f is defined as the minimum

distance between f and affine functions, and is equal to the weight of the coset leader in

the coset f belongs to. Thus the weight distribution of coset leaders of RMm represents

the distribution of nonlinearity of Boolean functions. If the number of coset leaders of

weight i is N , the number of Boolean functions with nonlinearity i is N · |RMm| = N2m+1.

Nonlinearity is an important criterion for cryptographic system, block ciphers and stream

ciphers. There has been much study of nonlinearity of Boolean functions in cryptography

(see [12, 13] and references therein). The weight distributions of the cosets of RM5 are

completely determined in [7]. In general, however, it is infeasible to compute the weight

distributions of the cosets (even only the coset leaders) of RMm.

3.3.2 Larger Halves in RMm

For an integer m ≥ 1, RMm is defined recursively as

RMm =











F2 for m = 1,
⋃

c∈RMm−1

{c ◦ c, c ◦ c} for m ≥ 2,

where u◦v denotes the concatenation of u and v. Since all codewords in RMm except the

all-zero and the all-one codewords are minimum weight codewords, RM∗
m = RMm\{0, 1}.

From the conditions (3.1)–(3.3) we have

|LH−(c)| =
(

2m−1 − 1

2m−2 − 1

)

=
1

2

(

2m−1

2m−2

)

, (3.5)

|LH+(c)| =
(

2m−1 − 1

2m−2 + 1

)

(3.6)

for every c ∈ RM∗
m.
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Define

Sm = {l(c) : c ∈ RMm}.

Then Sm forms information bits for RMm, and |Sm| = m + 1. For notational simplicity,

we write Sm = {s1, s2, . . . , sm+1} with s1 < s2 < · · · < sm+1. We define the set Cm(si) ⊆
RM∗

m for 1 ≤ i ≤ m + 1 as follows:

Cm(si) = {c ∈ RM∗
m : l(c) = si}.

Then RM∗
m =

⋃m+1
i=1 Cm(si). We have

|Cm(si)| =







2m − 1 for i = 1,

2m+1−i for 2 ≤ i ≤ m + 1.
(3.7)

Let c1, c2, . . . , cl be codewords in RM∗
m. We say c1, . . . , cl, and 1 are linearly inde-

pendent if a1c1 + a2c2 + · · · + alcl + al+11 = 0 for ai ∈ {0, 1}, 1 ≤ i ≤ l + 1 implies

a1 = a2 = · · · = al+1 = 0. That is, if l + 1 codewords c1, . . . , cl, and 1 are linearly

independent, then every ci with 1 ≤ i ≤ l cannot be represented as a sum of other l

codewords.

Lemma 1. For 2 ≤ l ≤ m, let c1, c2, . . . , cl be codewords in RM∗
m such that c1, . . . , cl,

and 1 are linearly independent. Then w(c1 ∩ c2 ∩ · · · ∩ cl) = 2m−l.

Proof. We prove the statement by induction on l. For the case l = 2, the statement follows

from the fact that w(c1+c2) = w(c1)+w(c2)−2w(c1∩c2) and that w(c1+c2) = w(c1) =

w(c2) = 2m−1. For the induction step, assume that if l codewords in RM∗
m and 1 are

linearly independent, then the weight of their intersection vector is 2m−l. Let ci ∈ RM∗
m

with 1 ≤ i ≤ l+1 and 1 be linearly independent codewords. Let x = c1∩c2∩· · ·∩cl−1∩cl

and y = c1 ∩ c2 ∩ · · · ∩ cl−1 ∩ cl+1. From the assumption, w(x) = w(y) = 2m−l, and

w(x+y) = c1∩c2∩· · ·∩cl−1∩ (cl +cl+1) = 2m−l because ci with 1 ≤ i ≤ l−1, cl +cl+1,

and 1 are linearly independent. From the relation w(x∩y) = (w(x)+w(y)−w(x+y))/2

we have w(c1 ∩ c2 ∩ · · · ∩ cl ∩ cl+1) = w(x∩ y) = (2m−l + 2m−l − 2m−l)/2 = 2m−(l+1).

Lemma 2. Let c1, c2, c3 be distinct codewords in RM∗
m. For m ≥ 3,

w(c1 ∩ c2 ∩ c3) =



















2m−2 if c1 + c2 + c3 = 1,

0 if ci + cj = 1 for different i, j ∈ {1, 2, 3},
2m−3 otherwise.



22 3 Monotone Error Structure in First-Order Reed-Muller Codes

Proof. The statement follows from the fact that w(c1+c2 +c3) = w(c1)+w(c2)+w(c3)−
2(w(c1 ∩ c2) + w(c2 ∩ c3) + w(c1 ∩ c3)) + 4w(c1 ∩ c2 ∩ c3) and Lemma 1.

Lemma 3. Let c1, c2 be distinct codewords in Cm(si) with 1 ≤ i ≤ m. For m ≥ 2,

w(c1 ∩ c2) = w(c1 ∩ c2) = 2m−2.

Proof. Since c1, c2 ∈ Cm(si), c1 6= c2 . Hence c1, c2, and 1 are linearly independent.

Thus from Lemma 1 we have the statement.

3.4 Uncorrectable Errors of Weight 2m−2 for RMm

In this section, we determine the number of uncorrectable errors of weight half the mini-

mum distance for RMm. The proof was already given in [40], but here we give a slightly

simpler proof.

In the proof of [40], the cosets that have uncorrectable errors of weight 2m−2 are

partitioned into three types. Then the number of cosets for each type is determined, and

the structure of cosets containing the vectors of weight 2m−2 is revealed. On the other

hand, in our proof, first we observe that uncorrectable errors of weight 2m−2 are equivalent

to the set of larger halves of weight 2m−2 of codewords except the all-zero and the all-one

codewords. Then counting the number of larger halves that are common among two or

more codewords leads to the result. Our approach does not make clear the structure of

cosets containing the vectors of weight 2m−2. Therefore, our proof leads directly to the

result and is thus simpler than that of [40].

We have E1
2m−2(RMm) = LH−(RM∗

m) because the set of larger halves of weight 2m−2

contains the set of minimal uncorrectable errors of weight 2m−2, and every uncorrectable

error of weight 2m−2 is minimal. There can be some v ∈ E1
2m−2(RMm) that is a larger

half of two or more codewords in RM∗
m. Let i ≥ 1 be an integer. Define

Di
m = {v ∈ E1

2m−2(RMm) : |{c ∈ RM∗
m : v ∈ LH−(c)}| = i}.

That is, Di
m is the set of all uncorrectable errors v of weight 2m−2 such that v is a common

larger half among i codewords in RM∗
m. Then

|E1
2m−2(RMm)| =

∑

i≥1

|Di
m|. (3.8)

The following lemma says that four or more codewords in RM∗
m cannot have a common

larger half of weight 2m−2.
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Lemma 4. Di
m = ∅ for m ≥ 2 and i ≥ 4.

Proof. For v ∈ E1
2m−2(RMm), assume that there are four codewords ci ∈ RM∗

m with

1 ≤ i ≤ 4 such that v ∈ LH−(ci). Then, from the condition (3.1), v ⊆ ci for 1 ≤ i ≤ 4.

Thus |S(ci) \ S(v)| = 2m−2 for 1 ≤ i ≤ 4. Since S(ci) \ S(v) ⊂ {1, 2, . . . , n} \ S(v)

for 1 ≤ i ≤ 4 and |{1, 2, . . . , n} \ S(v)| = 3 · 2m−2, there are two codewords, say c1

and c2, such that (S(c1) \ S(v)) ∩ (S(c2) \ S(v)) 6= ∅. Then |S(c1) ∩ S(c2)| = |S(v)| +
|(S(c1) \ S(v)) ∩ (S(c2) \ S(v))| > 2m−2. Hence, for the codeword c1 + c2, w(c1 + c2) =

w(c1) + w(c2)− 2w(c1 ∩ c2) < 2m−1. This contradicts the fact that 2m−1 is the minimum

weight.

Corollary 1. For m ≥ 2,

|E1
2m−2(RMm)| = |D1

m|+ |D2
m|+ |D3

m|, (3.9)

(2m − 1)

(

2m−1

2m−2

)

= |D1
m|+ 2|D2

m|+ 3|D3
m|. (3.10)

Proof. (3.9) is from (3.8) and Lemma 4. The left-hand side of (3.10) is the product of

|RM∗
m| = 2m+1− 2 and |LH−(c)| for c ∈ RM∗

m. This value is equal to the right-hand side

from Lemma 4.

Next, we will determine |D2
m| and |D3

m|. |D1
m| and |E1

2m−2(RMm)| will thereby be

determined from Corollary 1.

Lemma 5. For m ≥ 2,

D2
m =

⋃

si∈Sm\{s1,sm+1}

{c1 ∩ c2 : c1, c2 ∈ Cm(si), c1 6= c2}, (3.11)

D3
m = {c1 ∩ c2 : c1, c2 ∈ Cm(s1), c1 6= c2}. (3.12)

Proof. For different c1, c2 ∈ Cm(si) with 1 ≤ i ≤ m, w(c1 ∩ c2) = 2m−2 from Lemma 3,

and S(c1∩c2) contains si. Therefore, the vector v = c1∩c2 is a larger half of both c1 and

c2. For i = 1, v is also a larger half of the codeword of c1 + c2 since c1 + c2 ∈ Cm(s1) and

S(c1 ∩ c2) ⊂ S(c1 + c2). For 2 ≤ i ≤ m, there is no other codeword c ∈ Cm(si) \ {c1, c2}
such that v ∈ LH−(c). This can be shown by a similar argument of the proof of Lemma 4.

For i = m + 1, there is only one codeword in Cm(si).

Corollary 2. For m ≥ 2,

|D2
m| = |D3

m| =
1

3

(

2m − 1

2

)

.
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Proof. From Lemma 5, for each codeword in Cm(1) there are two other codewords such

that those three have the common larger half. For each codeword in Cm(si) for 2 ≤ i ≤ m,

there is another codeword such that those two have the common larger half. Therefore,

we have

|D3
m| =

|Cm(s1)|(|Cm(s1)| − 1)

6

=
1

3

(

2m − 1

2

)

and

|D2
m| =

m
∑

i=2

|Cm(si)|(|Cm(si)| − 1)

2

=
1

3

(

2m − 1

2

)

from (3.7).

The number of uncorrectable errors of weight half the minimum distance is deter-

mined by Corollaries 1 and 2.

Theorem 1 ([40]). For m ≥ 2,

|E1
2m−2(RMm)| = (2m − 1)

(

2m−1

2m−2

)

−
(

2m − 1

2

)

.

The number of correctable errors are obtained by the equation |E0
2m−2(RMm)| +

|E1
2m−2(RMm)| =

(

2m

2m−2

)

. These expressions can be approximated by Stirling’s approxi-

mation, n! ≈
√

2πn(n/e)n, and thus we have

|E0
2m−2(RMm)| ≈

√

16

3π2m

(

16

3
√

3

)2m−1

,

|E1
2m−2(RMm)| ≈ 22m+ m+1

2√
π

.

3.5 Uncorrectable Errors of Weight 2m−2 + 1 for RMm

In this section, we determine the number of uncorrectable errors of weight half the mini-

mum distance plus one for the first-order Reed-Muller codes.

The set E1
2m−2+1(RMm) contains LH+(RM∗

m), and LH+(RM∗
m) contains all minimal

uncorrectable errors of weight 2m−2+1 from (4.1). Therefore, the remaining uncorrectable

errors in E1
2m−2+1(RMm) are non-minimal ones.
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Figure 3.2: The structure of E1
2m−2+1(RMm). M1

2m−2+1(RMm) is the set of minimal un-

correctable errors of weight 2m−2 + 1.

We will determine the size of E1
2m−2+1(RMm) by partitioning the set into two subsets.

The first one is the set of vectors of weight 2m−2 + 1 that are covered by codewords in

RM∗
m. More precisely, it is

Wm = {v ∈ Fn
2m−2+1 : v ⊆ c for some c ∈ RM∗

m}, (3.13)

where

Fn
i = {v ∈ Fn : w(v) = i} for 1 ≤ i ≤ n.

Note that every v ∈ Wm is uncorrectable because the coset containing v contains the

smaller weight vector c + v.

The second subset is the set of the remaining vectors, E1
2m−2+1(RMm) \Wm. Here

note that Wm contains LH+(RM∗
m) and LH+(RM∗

m) contains all minimal uncorrectable

errors. Hence a vector in the second set is a non-minimal vector. Such a vector covers

a minimal uncorrectable error of weight 2m−2. Since the set of minimal uncorrectable

errors of weight 2m−2 is LH−(RM∗
m), we consider the set of vectors obtained by adding a

weight-one vector to vectors in LH−(RM∗
m) that are not covered by codewords in RM∗

m.

Define

Fn
1 (c) = {e ∈ Fn

1 : e ∩ c = 0}

for c ∈ RM∗
m. Then, the second subset can be represented as Xm \ Ym, where

Xm =
⋃

c∈RM∗

m

{v + e : v ∈ LH−(c), e ∈ Fn
1 (c)},

Ym = {u ∈ Xm : u ⊆ c for some c ∈ RM∗
m},



26 3 Monotone Error Structure in First-Order Reed-Muller Codes

��������
�	
�� 
� �� �� �� ������ �� � ��� � !"#$%& ' ()* +

,-./0,./- 12 23 4 55 6789 :;
Figure 3.3: The relations between LH(RM∗

m), E1
2m−2(RMm), and E1

2m−2+1(RMm).

and thus we have

|E1
2m−2+1(RMm)| = |Wm|+ |Xm \ Ym|. (3.14)

The relations between M1(RMm), LH+(RM∗
m), Wm, and Xm \ Ym in E1

2m−2+1(RMm) are

shown in Figure 3.2. Figure 3.3 presents another view of the relations together with

E1
2m−2(RMm).

The set Wm contains
(

2m−1

2m−2+1

)

vectors for each codeword in RM∗
m, and all |RM∗

m| ·
(

2m−1

2m−2+1

)

such vectors are distinct because of the following lemma.

Lemma 6. Let c be a codeword in RM∗
m and v be a vector of weight 2m−2 + 1 such that

v ⊆ c. Then there is no other codeword c′ in RM∗
m such that v ⊆ c′.

Proof. If v ⊆ c′, then c′ 6= c and w(c ∩ c′) ≥ w(v) = 2m−2 + 1. These contradict

Lemma 1.

Now we have

|Wm| = 2(2m − 1)

(

2m−1

2m−2 + 1

)

.

Next, we will determine the size of Xm \ Ym. For Xm and Ym, we define the corre-

sponding multisets X̃m and Ỹm. That is, X̃m is a multiset obtained by taking the union

of the sets of vector obtained by adding vectors e ∈ Fn
1 (c) to larger halves v ∈ LH−(c)

for each c ∈ RM∗
m. The set Ỹm is a multiset of vectors in X̃m that are covered by some

codeword in RM∗
m. Then we have

|X̃m| = |RM∗
m| ·

(

2m−1 − 1

2m−2 − 1

)

· 2m−1

= 2m−1(2m − 1)

(

2m−1

2m−2

) (3.15)
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since the number of larger halves of each codeword is
(

2m−1−1
2m−2−1

)

from (3.1)–(3.3), and there

are 2m−1 choices for e ∈ Fn
1 (c). We determine |Xm \ Ym| by using X̃m and Ỹm. First we

show that the multiplicity of vectors in X̃m \ Ỹm is not greater than 2.

Lemma 7. The multiplicity of a vector in X̃m \ Ỹm is less than or equal to 2 for m ≥ 5.

Proof. Let c1, c2, c3 be distinct codewords in RM∗
m. For 1 ≤ i ≤ 3, suppose there exist

vi, ei, u such that vi ∈ LH−(ci), ei ∈ Fn
1 (ci), u = vi + ei, and there exists no c4 ∈ RM∗

m

satisfying u ⊆ c4.

First we show c1, c2, c3, and 1 are linearly independent. Since w(c1 ∩ c2 ∩ c3) 6= 0

for m ≥ 4 from the assumption, we have c2 6= c1 and c3 6= c1. If c3 = c1 +c2 then w(c1∩
c2 ∩ c3) = 0, leading to the contradiction. Suppose c3 = c1 + c2. If S(e1) ∈ S(c2) \S(c1)

then e1 = e3 because {S(c2) \ S(c1)} ∩ S(c3) = ∅. In this case we cannot choose e2 such

that e2 ∈ Fn
1 (c2) and e2 ⊆ c1 ∩ c3. The same thing occurs if S(e1) ∈ S(c3) \ S(c1). Thus

the contradiction arises, and c1, c2, c3, and 1 are linearly independent.

If v1 = v2, then v1 ∈ LH−(c1)∩LH−(c2) and thus v1 = c1∩c2 from Lemma 3. Since

c1∩c2 ⊆ c1 + c2 and e1 ⊆ c1 + c2, we have v1+e1 ⊆ c1 + c2, leading to the contradiction.

Therefore v1, v2, v3 are distinct, and so are e1, e2, e3. Then w(v1∩v2∩v3) = 2m−2−2, and

thus w(c1∩c2∩c3) ≥ w(v1∩v2∩v3) = 2m−2−2. On the other hand, w(c1∩c2∩c3) = 2m−3

from Lemma 1. Thus we have 2m−3 ≥ 2m−2 − 2. The contradiction arises for the case

m ≥ 5.

Thus the size of Xm \ Ym is represented as follows.

|Xm \ Ym| = |X̃m| − |Ỹm| −
|Z̃m|

2
, (3.16)

where Z̃m is the multiset defined as

Z̃m = {v ∈ X̃m : v * c for every c ∈ RM∗
m, the multiplicity of v is 2}.

We will determine |Ỹm| and |Z̃m|. The next lemma is useful to determine |Ỹm|.
Lemma 8. Let c1, c2 ∈ RM∗

m. Then

1. there exist v ∈ LH−(c1), e ∈ Fn
1 (c1) satisfying v + e ⊆ c2 if and only if

c1 6= c2 and l(c1) ∈ S(c2); (3.17)

2. if (3.17) holds, then

{(v, e) : v ∈ LH−(c1), e ∈ Fn
1 (c1), v + e ⊆ c2}

= {(c1 ∩ c2, e) : e ∈ Fn
1 , S(e) ⊆ S(c2) \ S(c1)}. (3.18)
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Proof. (First part) The only if part is obvious. We prove the if part. Let v = c1 ∩ c2.

Since c1 6= c2 and c1 + c2 6= 1 from (3.17), we have w(v) = 2m−2 from Lemma 1. We

have l(v) = l(c1) from l(c1) ∈ S(c2). Thus v ∈ LH−(c1). If we take e ∈ Fn
1 (c1) such

that S(e) ⊆ S(c2) \ S(c1), then v + e ⊆ c2.

(Second part) The ⊇ part is obvious, so we show the ⊆ part. Since v ⊆ c1 and

v ⊆ c2, it holds that w(c1 ∩ c2) ≥ w(v) = 2m−2. We also have w(c1 ∩ c2) = 2m−2.

Therefore we have v = c1 ∩ c2. It immediately follows that S(e) ⊆ S(c2) \ S(c1) from

c1 ∩ e = 0 and v + e ⊆ c2.

From Lemma 8, v + e ∈ X̃m is covered by every c2 ∈ RM∗
m satisfying (3.17).

The number of codewords c2 satisfying (3.17) is |RMm|/2 − 2 = 2m − 2. There are

|S(c2) \ S(c1)| = 2m−2 choices of e from (3.18). Thus we have

|Ỹm| = |RM∗
m| · (2m − 2) · 2m−2

= 2m(2m − 1)(2m−1 − 1). (3.19)

The following lemma is useful to derive |Z̃m|.

Lemma 9. Let u ∈ X̃m of multiplicity 2. That is, u is represented as u = v1+e1 = v2+e2

where vi ∈ LH−(ci), ci ∈ RM∗
m, ei ∈ Fn

1 (ci) for i = 1, 2, and c1 6= c2. Then, for m ≥ 5,

there exists c3 ∈ RM∗
m such that u ⊆ c3 if and only if e1 = e2.

Proof. First note that c1 + c2 6= 1 since v1 + e1 = v2 + e2 cannot hold for m ≥ 3 if

c1 + c2 = 1. (Only if part) We have c1 6= c3 from v1 + e1 * c1 and v1 + e1 ⊆ c3.

Since v1 ⊆ c1, and v1 ⊆ c3, we have v1 = c1 ∩ c3. Equivalently, v2 = c2 ∩ c3. Then

v1∩v2 = c1∩c2∩c3, and hence w(v1∩v2) = w(c1∩c2∩c3). Since c1, c2, c3 are distinct,

w(c1 ∩ c2 ∩ c3) is either 2m−2, 2m−3, or 0 from Lemma 2. We have w(v1 ∩ v2) is 2m−2 if

v1 = v2, and is 2m−2−2 otherwise because v1 +e1 = v2+e2. Therefore w(v1∩v2) = 2m−2

for m ≥ 5 from the fact 2m−3 6= 2m−2 − 2. Hence v1 = v2, and thus e1 = e2.

(If part) Since e1 = e2 and c1 6= c2, we have v1 = v2 = c1 ∩ c2 ⊆ c1 + c2. Since

e1 ∩ c1 = e2 ∩ c2 = e1 ∩ c2 = 0, we have e1 ⊆ c1 + c2. By taking c3 = c1 + c2 we have

u = v1 + e1 ⊆ c3.

From Lemma 9, for each c1 ∈ RM∗
m, |Z̃m| is obtained by counting all patterns in

{v1 + e1 : v1 ∈ LH−(c1), e1 ∈ Fn
1 (c1)} such that v1 + e1 = v2 + e2 for some v2, e2 with

v2 ∈ LH−(c2), c2 ∈ RM∗
m \ {c1}, e2 ∈ Fn

1 (c2) and e1 6= e2. We will count such v1 + e1 for

each c1 ∈ RM∗
m.

There are three cases to be considered:
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1. In the case that l(c1) = l(c2); we choose w such that w ⊆ c1∩c2, w(w) = 2m−2−1,

and l(w) = l(c1 ∩ c2). We choose e2 so that S(e2) ⊆ S(c1) \ S(c2), and choose e1

so that S(e1) ⊆ S(c2) \ S(c1). Then letting v1 = w + e2 and v2 = w + e1 gives

vectors as v1 + e1 = v2 + e2. There are (2m−2 − 1) · 2m−2 · 2m−2 such v1 + e1.

For each codeword c1 in Cm(si) there are |Cm(si)|−1 codewords c2 in RM∗
m satisfying

l(c1) = l(c2).

2. In the case that l(c1) > l(c2); since v1 ∈ LH−(c1) and v2 ∈ LH−(c2), the l(c2)-th

bit of e1 is one.

(a) If the l(c1)-th bit of c2 is one; we choose w such that w ⊆ c1 ∩ c2, w(w) =

2m−2 − 1, and l(w) = l(c1 ∩ c2). We choose e2 so that S(e2) ⊆ S(c1) \ S(c2).

Then letting v1 = w + e2 and v2 = w + e1 gives vectors as v1 + e1 = v2 + e2.

There are (2m−2 − 1) · 2m−2 such v1 + e1.

For each codeword c1 in Cm(si) with i ≥ 2, there are
((

∑

j<i |Cm(sj)|+ 1
)

/2− 1
)

codewords c2 in RM∗
m satisfying l(c1) ∈ S(c2).

(b) If the l(c1)-th bit of c2 is zero; then e2 must be the vector having one in the

l(c1)-th bit. We choose w such that w ⊆ c1 ∩ c2 and w(w) = 2m−2 − 1. Then

letting v1 = w + e2 and v2 = w + e1 gives vectors as v1 + e1 = v2 + e2. There

are 2m−2 such v1 + e1.

For each codeword c1 in Cm(si) with i ≥ 2, there are
((

∑

j<i |Cm(sj)|+ 1
)

/2− 1
)

codewords c2 in RM∗
m satisfying l(c1) /∈ S(c2) and c1 + c2 6= 1.

3. In the case that l(c1) < l(c2); the number of vectors we should count is equal to

that for the second case.

From the above analysis we have

|Z̃m| =
m+1
∑

i=1

|Cm(si)|(|Cm(si)| − 1)(2m−2 − 1)(2m−2)2

+ 2
m+1
∑

i=2

|Cm(si)|
(

1

2

(

i−1
∑

j=1

|Cm(sj)|+ 1

)

− 1

)

(2m−2 − 1)2m−2

+ 2
m+1
∑

i=2

|Cm(si)|
(

1

2

(

i−1
∑

j=1

|Cm(sj)|+ 1

)

− 1

)

2m−2

= (2m−2 − 1)(2m−2)2

(

(2m − 1)(2m − 2) +

m+1
∑

i=2

4m+1−i − 2m+1−i

)
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+ 2(2m−2)2

(

m+1
∑

i=2

2m+1−i(2m − 2m+1−i − 1)

)

= (2m−2 − 1)(2m−2)2

(

(2m − 1)(2m − 2) +
1

3
(22m − 1)− (2m − 1)

)

+ 2(2m−2)2

(

(2m − 1)2 − 1

3
(22m − 1)

)

= (2m−2 − 1)2m−12m(2m − 1)(2m − 2)

6
+ 2m−1 2m(2m − 1)(2m − 2)

6

= 22m−3

(

2m

3

)

. (3.20)

From (3.14), (3.15), (3.16), (3.19), and (3.20), we can determine the number of

uncorrectable errors of weight 2m−2 + 1 for RMm.

Theorem 2. For m ≥ 5,

|E1
2m−2+1(RMm)| = 4(2m − 1)(2m−3 + 1)

(

2m−1

2m−2 + 1

)

− (4m−2 + 3)

(

2m

3

)

.

The number of correctable errors of weight 2m−2 + 1 is obtained from the equation,

|E0
2m−2+1(RMm)|+ |E1

2m−2+1(RMm)| =
(

2m

2m−2 + 1

)

.

The number of Boolean functions of m variables with nonlinearity 2m−2 + 1 is im-

mediately given.

Corollary 3. The number of Boolean functions of m variables with nonlinearity 2m−2 +1

is 2m+1|E0
2m−2+1(RMm)|, for the case m ≥ 5, which is equal to

2m+1

((

2m

2m−2 + 1

)

− 4(2m − 1)(2m−3 + 1)

(

2m−1

2m−2 + 1

)

+ (4m−2 + 3)

(

2m

3

))

.

The expressions for |E0
2m−2+1(RMm)| and |E1

2m−2+1(RMm)| are approximated as

|E0
2m−2+1(RMm)| ≈

√

3

2m−3π

(

16

3
√

3

)2m−1

,

|E1
2m−2+1(RMm)| ≈ 22m+1+ 3

2
m

√
π

.
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3.6 Minimal Uncorrectable Errors for RMm

In this section, we determine the weight distribution of minimal uncorrectable errors in

the first-order Reed-Muller codes.

For an integer i with 0 ≤ i ≤ n, define

M1
i (C) = {v ∈M1(C) : w(v) = i}.

The weight distribution of minimal uncorrectable errors for RMm is defined as (|M1
0 (RMm)|,

|M1
1 (RMm)|, . . . , |M1

n(RMm)|).
First we observe that M1(RMm) ⊆ LH(RM∗

m) and LH(RM∗
m) contains vectors of

weights 2m−2 and 2m−2+1. Since 2m−2 is the smallest weight in M1(RMm), LH−(RM∗
m)(=

E1
2m−2(RMm)) is the set of minimal uncorrectable errors of weight 2m−2. Thus we have

|M1
i (RMm)| =







0 for 0 ≤ i ≤ 2m−2 − 1, 2m−2 + 2 ≤ i ≤ n,

|E1
2m−2(RMm)| for i = 2m−2.

(3.21)

The size of E1
2m−2(RMm) is given in Theorem 1.

For the weight 2m−2 + 1 we have

|M1
2m−2+1(RMm)| = |LH+(RM∗

m)| − |LH+(RM∗
m) \M1(RMm)|. (3.22)

We will determine |LH+(RM∗
m)| and |LH+(RM∗

m)\M1(RMm)| in the rest of this section.

The size of LH+(RM∗
m) is immediately determined. From Lemma 6 there is no

common larger half of weight 2m−2 + 1 of two or more codewords in RM∗
m. Therefore

|LH+(RM∗
m)| =

(

2m−1 − 1

2m−2 + 1

)

· |RM∗
m|

= 2(2m − 1)

(

2m−1 − 1

2m−2 + 1

)

. (3.23)

Next we will determine |LH+(RM∗
m) \ M1(RMm)|. For v ∈ LH+(RM∗

m), v /∈
M1(RMm) if and only if v ⊇ v′ for some v′ ∈ LH−(RM∗

m). Then the following lemma

holds.

Lemma 10. Let c, c′ be codewords in RM∗
m. Then

1. there exist v ∈ LH+(c), v′ ∈ LH−(c′) satisfying v ⊇ v′ if and only if

l(c) < l(c′) and l(c′) ∈ S(c); (3.24)
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2. if (3.24) holds, then

{(v, v′) : v ∈ LH+(c), v′ ∈ LH−(c′), v′ ⊆ v}
= {(c ∩ c′ + e, c ∩ c′) : e ∈ Fn

1 , S(e) ⊆ S(c) \ {S(c′) ∪ {l(c)}}. (3.25)

Proof. (First part) We first show the if part. From (3.24), we have c + c′ 6= 0, 1 and

thus w(c ∩ c′) = 2m−2 from Lemma 1. If we take v′ = c ∩ c′ then v′ ∈ LH−(c′). Since

v′ ⊆ c and l(v′) = l(c′) > l(c), there exists v ∈ LH+(c) satisfying v′ ⊆ v. Next we show

the only if part. The inequality l(c) < l(c′) comes from l(c) < l(v) ≤ l(v′) = l(c′), and

l(c′) ∈ S(c) comes from l(c′) = l(v′) ∈ S(v′) ⊆ S(v) ⊆ S(c).

(Second part) From the discussion on the first part of the proof, v′ = c ∩ c′. Then

v ∈ LH+(c) if and only if v = v + e, e ∈ Fn
1 , S(c) \ {S(c′) ∪ {l(c)}} .

Next we consider the number of v′ ∈ LH−(RM∗
m) covered by v ∈ LH+(RM∗

m).

Lemma 11. For v ∈ LH+(RM∗
m), there is at most one v′ ∈ LH−(RM∗

m) such that v′ ⊆ v

for m ≥ 4.

Proof. Suppose there are two distinct vectors v′ ∈ LH−(c′) and v′′ ∈ LH−(c′′) such that

v′ ⊆ v and v′′ ⊆ v for some c′, c′′ ∈ RM∗
m. Then we have v′ = c∩c′ and v′′ = c∩c′′ from

Lemma 10. The vector v is represented as v′ + e1 and v′′ + e2 for vectors e1, e2 ∈ Fn
1 .

Then d(v′, v′′) = d(v + e1, v + e2) = 2, where d(x, y) is the Hamming distance between

x and y. However, d(v′, v′′) = d(c ∩ c′, c ∩ c′′) ≥ 2m−2 because v′ and v′′ are distinct

codewords in the second-order Reed-Muller code, the minimum distance of which is 2m−2.

Therefore a contradiction arises if m ≥ 4.

If v ∈ LH+(c) covers v′ ∈ LH−(c′) for c′ ∈ RM∗
m, then v′ is unique for v from

Lemma 11. Then the number of v in LH+(c) that covers v′ is the size of S(c) \ {S(c′)∪
{l(c)}} from (3.25), which is equal to 2m−2 − 1. If we know the number of codewords

whose larger halves cover v′ for each v′ ∈ LH−(RM∗
m), then the product of it and 2m−2−1

yields the number of vectors in LH+(RM∗
m) that cover some larger half in LH−(RM∗

m),

which is |LH+(RM∗
m) \M1(RMm)|.

We determine the number of v′ ∈ LH−(RM∗
m) such that v′ ⊆ v for some v ∈

LH+(RM∗
m). Suppose v′ ∈ LH−(c′) and c′ ∈ Cm(si). Note from (3.24) that i 6= 1

because if i = 1 there is no c such that l(c) < si. For c′ ∈ Cm(si) with i ≤ 2, the number

of c ∈ RM∗
m satisfying (3.24) is

|Cm(s1)|+ 1

2
− 1 +

i−1
∑

j=2

|Cm(sj)|
2

= 2m − 1 + 2m−i+1.
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From (3.25) we have v′ = c∩c′. Then there may be other codeword c′′ ∈ RM∗
m such that

v′ = c ∩ c′′. That is, v′ is a common larger half of c′ and c′′. Fortunately, the number

of such larger halves is obtained in Section 3.4 and is |D2
m|. In the case we consider here,

there is no common larger half of three codewords, which is a larger half of a codeword

in D3
m. This is because, as in the proof of Lemma 5, D3

m consists of larger halves of

codewords in Cm(s1), but the larger halves we consider here are those in Cm(si) for i ≥ 2.

Therefore the number of v′ ∈ LH−(RM∗
m) such that v′ ⊆ v for some v ∈ LH+(RM∗

m) is

m+1
∑

i=2

|Cm(si)|(2m − 1 + 2m−i+1)− |D2
m|

=
m+1
∑

i=2

2m−i+1(2m − 1 + 2m−i+1)− 1

3

(

2m − 1

2

)

= (2m − 1)
m+1
∑

i=2

2m−i+1 −
m+1
∑

i=2

4m−i+1 − (2m − 1)(2m − 2)

6

= (2m − 1)

m−1
∑

i=0

2i −
m−1
∑

i=0

4i − (2m − 1)(2m − 2)

6

= (2m − 1)2 − 4m − 1

3
− (2m − 1)(2m − 2)

6

=

(

2m − 1

2

)

.

Thus the product of
(

2m−1
2

)

and 2m−2 − 1 gives the size of |LH+(RM∗
m) \M1(RMm)|.

Lemma 12. For m ≥ 4,

|LH+(RM∗
m) \M1(RMm)| = (2m−2 − 1)

(

2m − 1

2

)

.

Now the weight distribution of the minimal uncorrectable errors for RMm is deter-

mined.

Theorem 3. For m ≥ 4 and 0 ≤ i ≤ n,

|M1
i (RMm)| =



















(2m − 1)
(

2m−1

2m−2

)

−
(

2m−1
2

)

for i = 2m−2,

2(2m − 1)
(

2m−1−1
2m−2+1

)

− (2m−2 − 1)
(

2m−1
2

)

for i = 2m−2 + 1,

0 otherwise.

Proof. The statement follows from Theorem 1, (3.21), (3.22), (3.23), and Lemma 12.

By Stirling’s approximation, we have |M1
2m−2+1(RMm)| ≈ |LH+(RM∗

m)| ≈
√

2m

π
22m−1+1.
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3.7 Concluding Remarks

In [40], the number of uncorrectable errors of weight 2m−2 for RMm was derived. We

have derived the same result with quite different and simple way. The main ingredients

of our approach are larger halves and the monotone structure. Because of the property

of larger halves, the number of uncorrectable errors of weight 2m−2 + 1 is also derived.

The structure of E1
2m−2+1(RMm) is revealed as in Figure 3.2, but our approach does not

reveal what type of vectors (functions) are the coset leaders of weight 2m−2 + 1.

One possible future work is applying our approach to the number of uncorrectable

errors of weight greater than 2m−2 + 1, say 2m−2 + 2. If we take a similar approach to the

case of weight 2m−2 + 1 to derive the number of uncorrectable errors of weight 2m−2 + 2,

we will consider constructing the vectors obtained by adding weight one or two vectors

to the minimal uncorrectable errors. Then if all the multiplicities of vectors obtained by

the above construction are explicitly described, we can obtain the result, but it seems to

be much more complicated than the case of weight 2m−2 + 1.



Chapter 4

Monotone Error Structure and Trial

Sets

4.1 Introduction

Helleseth, Kløve, and Levenshtein [19] introduced trial sets for a code. Trial sets can be

used for a minimum distance decoding and for giving an upper bound on the number of

uncorrectable errors. The set of all codewords except the all-zero codeword and the set

of minimal codewords [3] in the code are examples of trial sets. It is, however, desirable

to obtain the smaller trial sets for their applications.

In this chapter, first some upper and lower bounds on the size of minimum trial sets

are derived. Experimental results show our bound is tighter than known bounds, and

the size of minimum trial sets are determined for several codes since upper and lower

bounds coincides for them. Next we investigate whether trial sets always contain all the

minimum weight codewords. We derive sufficient conditions under which all the minimum

weight codewords are in every trial set and show that the condition is satisfied for Reed-

Muller codes and random linear codes. For codes with odd minimum distance d, we give

a sufficient condition under which all the codewords of weights d and d + 1 are in every

trial set. For the code that satisfies the above conditions, we derive the upper and lower

bounds on the number of uncorrectable errors of weight half the minimum distance. The

lower bound asymptotically coincide with the upper bound for Reed-Muller codes and

random linear codes.

The next section provides the definition and applications of trial sets. The bounds on

the size of minimum trial sets are presented in Section 4.3. In Section 4.4, the conditions

under which any trial set contains the minimum weight codewords are considered. In

35
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Section 4.5, the lower bound on the number of uncorrectable errors of weight half the

minimum distance is given for the codes satisfying the conditions presented in the previous

section.

4.2 Definition and Applications of Trial Sets

A trial set T for the code C is defined as the set of codewords in C \ {0} that has the

following property:

e ∈ E0(C) if and only if e ≺ e + c for all c ∈ T.

Equivalently,

e ∈ E1(C) if and only if e + c ≺ e for some c ∈ T.

The minimum distance decoding using a trial set T is the following.

[Trial set decoding]

Let y ∈ Fn be a received vector.

1. Set e← y.

2. Find a codeword c ∈ T such that e + c ≺ e.

Set e← e + c.

3. Repeat Step 2 until no such c exists (Then e becomes the coset leader).

4. Output e + y.

From the definition of trial sets one can see that the decoder finds the coset leader of

the coset containing the received vector, and thus performs as a minimum distance de-

coder. The trial set decoding is a type of gradient-like decoding [4]. Although there is no

nontrivial upper bound on the time-complexity of the trial set decoding, the complexity

seems to depend on the size of the trial set used in the algorithm.

The weight distribution of a trial set gives an upper bound on the number of uncor-

rectable errors. Let T be a trial set for an (n, k, d) linear code C. Then, for an integer i

with ⌊(d− 1)/2⌋ < i ≤ n, we have [19, Corollary 7]

|E1
i (C)| ≤

2i
∑

j=d

|Aj(T )|
min{i,j}
∑

l=⌈j/2⌉

(

j

l

)(

n− j

i− l

)

−
i
∑

l=⌈d/2⌉

|A2l(T )|
(

2l − 1

l

)(

n− 2l

i− l

)
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=
2i
∑

j=⌈ d

2
⌉



|A2j(T )|





(

2j − 1

j − 1

)(

n− 2j

i− j

)

+

min{i,2j}
∑

l=j+1

(

2j

l

)(

n− 2j

i− l

)





+|A2j−1(T )|
min{i,2j−1}
∑

l=j

(

2j − 1

l

)(

n− 2j + 1

i− l

)



 .

For two trial sets T and T ′ with T ′ ⊂ T , the bound using T ′ is tighter than that using T .

In both applications, smaller trial sets are desirable. Therefore, we consider the

smallest trial set. Define a minimum trial set for C as the smallest trial set for C,

denoted by Tmin. Note that Tmin itself may not be unique.

A necessary and sufficient condition for a set to be a trial set is stated as follows [19,

Corollary 3]:

T ⊆ C \ {0} is a trial set for C if and only if M1(C) ⊆ LH(T ). (4.1)

That is, a trial set is a set of codewords whose larger halves contain minimal uncorrectable

errors.

The following proposition says that a trial set can consist of only minimal codewords.

Proposition 1 ([19, Corollary 5]). Let T be a trial set for a linear code C of d ≥ 2. Then

T ∩ C∗ is also a trial set for C.

4.3 Size of Minimum Trial Sets

We give some upper and lower bounds on the size of minimum trial sets in this section.

It is clear from Proposition 1 that |Tmin| ≤ |C∗|. Let us define Tnec as the set of minimal

codewords c ∈ C∗ such that, for some v ∈ M1(C), v ∈ LH(c) and v /∈ LH(c′) for all

c′ ∈ C∗ \ {c}. That is, for c ∈ C∗,

c ∈ Tnec if and only if (M1(C) ∩ LH(c)) \ LH(C∗ \ {c}) 6= ∅.

Then codewords in Tnec are necessary to compose a trial set. We have the following

bounds on the size of minimum trial sets.

Theorem 4. Let Tmin be a minimum trial set for an (n, k, d) linear code C with d ≥ 2.

Then

max{k, |Tnec|} ≤ |Tmin| ≤ |Tnec|+ |M1(C) \ LH(Tnec)|.
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Table 4.1: Bounds of the size of minimum trial sets for some BCH, extended BCH, and

Reed-Muller codes.

Lower bounds Upper bounds

(n, k) code C New |Tmin| [19] New

k |Tnec| |C∗| |Tnec|+ |M1(C) \ LH(Tnec)|
(15,11) BCH 11* 11* 11∼83 308 83*

(15,7) BCH 7 44* 44∼87 108 87*

(15,5) BCH 5 30* 30 30* 30*

(16,11) exBCH 11 16* 16∼79 588 79*

(16,7) exBCH 7 45* 45∼86 126 86*

(16,5) exBCH 5 30* 30 30* 30*

(16,11) RM 11 15* 15∼79 588 79*

(16,5) RM 5 30* 30 30* 30*

* means the maximum/minimum value for the lower/upper bounds.

Proof. If a codeword c ∈ C is an input to a trial set decoder, then the decoder finds

the coset leader 0 and thus outputs c. The coset leader found by the decoder is a sum

of codewords in Tmin and the input. Therefore, the linear span of a trial set forms the

code C. This leads to k ≤ |Tmin|. |Tnec| ≤ |Tmin| is obvious. From the definition of Tnec,

Tmin contains Tnec. We show that the number of remaining codewords that should be

in Tmin, that is |Tmin \ Tnec|, is upper bounded by |M1(C) \ LH(Tnec)|. Since the larger

halves of Tmin contain M1(C) from (4.1), the larger halves of the set Tmin \ Tnec should

contain the set M1(C) \ LH(Tnec). Therefore, |Tmin \ Tnec| ≤ |M1(C) \ LH(Tnec)|, and

thus |Tmin| ≤ |Tnec|+ |M1(C) \ LH(Tnec)|.

While a naive algorithm for computing |Tmin| requires 22O(n)
time, the time complex-

ity for computing |Tnec| and |M1(C) \ LH(Tnec)| is 2O(n). Therefore, above bounds are

useful to estimate |Tmin|.
We compute the bounds in Theorem 4 and the upper bound |C∗| for some codes.

The results are shown in Table 4.1. The new upper bound is tight for all codes compared

to the known bound. The upper and lower bounds coincide for 3 codes, the (15, 5) BCH

code, the (16, 5) extended BCH code, and the (16, 5) Reed-Muller code.
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4.4 Minimum Weight Codewords in Trial Sets

In this section, we consider conditions under which any trial set contains all minimum

weight codewords. Let d be a minimum distance (weight) of C. We consider sufficient

conditions under which Ad(C) ⊆ Tnec holds.

4.4.1 Odd Minimum Weight Case

When d is odd, the weight of the vectors in LH(c) for c ∈ Ad(C) is (d + 1)/2. Since the

weight (d + 1)/2 is the minimum weight of the uncorrectable errors, the uncorrectable

errors of weight (d + 1)/2 are minimal uncorrectable errors. This means that, for every

c ∈ Ad(C), LH(c) are minimal uncorrectable errors. Therefore we have

c ∈ Tnec if and only if LH(c) \ LH(C∗ \ {c}) 6= ∅ (4.2)

for c ∈ Ad(C) with odd minimum distance d. We have the following facts.

Lemma 13. Let C be a linear code with odd minimum distance d and c be a codeword in

Ad(C). Then LH(c) ∩ LH(c′) = ∅ for any c′ ∈ Ad(C) \ {c}.

Proof. Suppose for contradiction that there exists v ∈ LH(c) ∩ LH(c′) for some c′ ∈
Ad(C) \ {c}, then we have v ⊆ c, v ⊆ c′, and thus w(c ∩ c′) ≥ w(v) = (d + 1)/2. Then

w(c + c′) = w(c) + w(c′)− 2w(c ∩ c′) ≤ d − 1, contradicting the minimum weight of d.

Therefore the statement follows.

Lemma 14. Let C be a linear code with odd minimum distance d and c be a codeword

in Ad(C). Then LH(c) ∩ LH−(c′) 6= ∅ for c′ ∈ Ad+1(C) if and only if l(c′) ∈ S(c) and

w(c ∩ c′) = (d + 1)/2.

Proof. (Only If part) If there is v ∈ LH(c) ∩ LH−(c′), then v ⊆ c, v ⊆ c′, w(v) =

(d + 1)/2. Thus w(c ∩ c′) ≥ (d + 1)/2. On the other hand, it holds that w(c + c′) =

w(c) + w(c′) − 2w(c ∩ c′) ≥ d. The last inequality follows from the fact that c + c′ is

a codeword in C. Since w(c) = d and w(c′) = d + 1, we have w(c ∩ c′) ≤ (d + 1)/2.

Therefore w(c ∩ c′) = (d + 1)/2 holds. The condition l(c′) ∈ S(c) must hold because all

vectors v in LH−(c′) meets l(v) = l(c) from the definition.

(If part) If we have l(c′) ∈ S(c) and w(c ∩ c′) = (d + 1)/2, then c ∩ c′ is a common

larger half of c and c′.

From the above lemmas, we have the following sufficient condition under which all

minimum weight codewords are in any trial set for odd minimum distance codes.
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Theorem 5. Let C be a linear code with odd minimum distance d. Then Ad(C) ⊆ Tnec

holds if
(

d
d+1
2

)

> |Ad+1(C)|. (4.3)

Proof. From Lemmas 13 and 14, we observe that two codewords in Ad(C) does not have

common larger halves and that a codeword in Ad(C) and that in Ad+1(C) can have

a common larger half. First we show that the number of common larger half among

c ∈ Ad(C) and c′ ∈ Ad+1(C) is at most one. For contradiction, suppose there exist two

distinct vectors in LH(c) ∩ LH−(c′). Then it must hold that w(c ∩ c′) ≥ (d + 1)/2 + 1,

but this leads to the contradiction that w(c + c′) = w(c) + w(c′)− 2w(c ∩ c′) ≤ d− 2.

For c ∈ Ad(C), if |LH(c)| > |Ad+1(C)| then there exist at least one larger half v

in LH(c) \ LH−(Ad+1(C)) = LH(c) \ LH(C \ {0, c}). Thus c ∈ Tnec from (4.2). Since

|LH(c)| =
(

d
(d+1)/2

)

for every c ∈ Ad(C), if
(

d
(d+1)/2

)

> |Ad+1(C)| then Ad(C) ⊆ Tnec.

For a codeword c ∈ Ad+1(C), we have

c ∈ Tnec if LH−(c) \ LH(C∗ \ {c}) 6= ∅. (4.4)

A sufficient condition under which all the codewords of weights d and d + 1 are in any

trial set is given as follows.

Theorem 6. Let C be a linear code with odd minimum distance d. Then Ad(C) ∪
Ad+1(C) ⊆ Tnec holds if

(

d
d+1
2

)

> |Ad(C)|+ |Ad+1(C)| − 1. (4.5)

Proof. From the proof of Theorem 5 we have |LH(c1) ∩ LH−(c2)| ≤ 1 for c1 ∈ Ad(C)

and c2 ∈ Ad+1(C). Here we show |LH−(c1) ∩ LH−(c2)| ≤ 1 for c1, c2 ∈ Ad+1(C). For

contradiction, suppose there exist two distinct vectors in LH−(c1) ∩ LH−(c2). Then

it must hold that w(c1 ∩ c2) ≥ (d + 1)/2 + 1, but this leads to the contradiction that

w(c1 + c2) = w(c1) + w(c2)− 2w(c1 ∩ c2) ≤ d− 1.

For c ∈ Ad+1(C), if |LH−(c)| > |Ad(C)| + |Ad+1(C) \ {c}| then there exist at least

one larger half v in LH−(c) \ {LH(Ad(C))∪LH−(Ad+1(C)} = LH−(c) \LH(C \ {0, c}).
Thus c ∈ Tnec from (4.4). Since |LH−(c)| =

(

d
(d+1)/2

)

for every c ∈ Ad+1(C), if
(

d
(d+1)/2

)

>

|Ad(C)|+ |Ad+1(C)| − 1 then Ad(C) ∪Ad+1(C) ⊆ Tnec.
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4.4.2 Even Minimum Weight Case

Define the set of leftmost coordinates of codewords in C;

S(C) = {l(c) : c ∈ C}.

For i ∈ S(C), let

C(i) = {c ∈ C : l(c) = i}.

When d is even, the weight of the vectors in LH−(c) for c ∈ Ad(C) is d/2, and

the weight d/2 is the minimum weight of the uncorrectable errors. Hence, the vectors in

LH−(c) are minimal uncorrectable errors. Thus we have

c ∈ Tnec if LH−(c) \ LH(C∗ \ {c}) 6= ∅ (4.6)

for c ∈ Ad(C) with even minimum distance d.

For a code with even minimum distance d, a sufficient condition under which all the

codewords of d are in any trial set is given.

Theorem 7. Let C be a linear code with even minimum distance d. Then Ad(C) ⊆ Tnec

holds if
1

2

(

d
d
2

)

> max
i∈S(C)

⌈ |Ad(C) ∩ C(i)| − 1

2

⌉

(4.7)

or
1

2

(

d
d
2

)

>

⌈ |Ad(C)| − 1

2

⌉

. (4.8)

Proof. First we note that, for two codewords c1, c2 ∈ Ad(C), the number of common

larger half of weight d/2 they have is at most one. That is, |LH−(c1) ∩ LH−(c2)| ≤ 1.

For contradiction, suppose there exist two distinct vectors in LH−(c1)∩LH−(c2). Then it

must hold that w(c1∩c2) ≥ d/2+1, but this leads to the contradiction that w(c1 +c2) =

w(c1) + w(c2)− 2w(c1 ∩ c2) ≤ d− 1. Furthermore, when |LH−(c1) ∩ LH−(c2)| = 1, the

vector v ∈ LH−(c1)∩LH−(c2) is represented as v = c1∩c2 and it holds that l(c1) = l(c2).

Let c ∈ Ad(C) and l(c) = i. If |LH−(c)| is greater than the number of codewords

c′ ∈ Ad(C) \ {c} of l(c′) = i, that is, |LH−(c)| > |Ad(C) ∩ C(i)| − 1, then it holds

that LH−(c) \ LH−(C \ {0, c}) = LH−(c) \ LH−(Ad(C) ∩ C(i) \ {c}) 6= ∅ by counting

argument. In this case, c ∈ Tnec from (4.6). The condition can be improved to |LH−(c)| >
⌈(|Ad(C) ∩ C(i)| − 1)/2⌉ because if c has the common larger half of weight d/2 with

c′ ∈ Ad(C) then the other codeword c + c′ ∈ Ad(C) does not have common larger halves

with c, since l(c + c′) 6= l(c).
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From (3.1)–(3.3), the size of LH−(c) for c ∈ Ad(C) is
(

d
d/2

)

/2. Therefore if
(

d
d/2

)

/2 >

maxi∈S(C)⌈(|Ad(C)∩C(i)| − 1)/2⌉ holds, any codeword in Ad(C) should be in Tnec. Since

the value maxi∈S(C) |Ad(C) ∩ C(i)| is upper bounded by |Ad(C)|, the condition (4.8)

follows.

The condition (4.7) is stronger than (4.8). Therefore, if the distribution of leftmost

coordinates of minimum weight codewords is known, it is better to use (4.7). However it is

often that only the number of minimum weight codewords is known, so the condition (4.8)

is useful.

4.5 Uncorrectable Error Estimation for Half the Min-

imum Distance

Under the sufficient conditions stated in the previous section, lower bounds on the number

of uncorrectable errors of weight half the minimum distance are derived. The correspond-

ing upper bounds are also given unconditionally.

First we give the bound for codes with odd minimum distance.

Theorem 8. Let C be a linear code with odd minimum distance d. If

(

d
d+1
2

)

> |Ad(C)|+ |Ad+1(C)| − 1

holds, then

(

d
d+1
2

)

(|Ad(C)|+ |Ad+1(C)|)− (2|Ad(C)|+ |Ad+1(C)| − 1)|Ad+1(C)|

≤ |E1
d+1
2

(C)| ≤
(

d
d+1
2

)

(|Ad(C)|+ |Ad+1(C)|).

Proof. First we observe that E1
(d+1)/2(C) = LH(Ad(C))∪LH−(Ad+1(C)). From Lemma 13

we have |LH(c1)∩LH(c2)| = 0 for c1, c2 ∈ Ad(C). From the proof of Theorem 5 we have

|LH(c1)∩LH−(c2)| ≤ 1 for c1 ∈ Ad(C) and c2 ∈ Ad+1(C). From the proof of Theorem 6

we have |LH−(c1) ∩ LH−(c2)| ≤ 1 for c1, c2 ∈ Ad+1(C).

Since a codeword c ∈ Ad(C) has at most one common larger half for every c′ ∈
Ad+1(C) and does not have common larger halves for any c′ ∈ Ad(C) \ {c}, at least

|LH(c)| − |Ad+1(C)| vectors in LH(c) does not have common larger halves. Since a

codeword c ∈ Ad+1(C) has at most one common larger half for every c′ ∈ Ad(C) ∪
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{Ad+1(C) \ {c}}, at least |LH−(c)|− |Ad(C)|− |Ad+1(C)|+1 vectors in LH−(c) does not

have common larger halves.

For every c1 ∈ Ad(C) and c2 ∈ Ad+1(C), we have |LH(c1)| = |LH−(c2)| =
(

d
(d+1)/2

)

.

Therefore we have the lower bound (
(

d
(d+1)/2

)

−|Ad+1(C)|)|Ad(C)|+(
(

d
(d+1)/2

)

−|Ad(C)|−
|Ad+1(C)|+ 1)|Ad+1(C)|.

The upper bound is obtained from the inequality |E1
(d+1)/2(C)| ≤ |LH(Ad(C))| +

|LH−(Ad+1(C))| ≤
(

d
(d+1)/2

)

|Ad(C)|+
(

d
(d+1)/2

)

|Ad+1(C)|.

The difference between the upper and lower bounds is (2|Ad(C)| + |Ad+1(C)| −
1)|Ad+1(C)|. If the fraction |Ad+1(C)|/

(

d
(d+1)/2

)

tends to zero as the code length becomes

large, the lower bound comes close to the upper one.

Next we give the bound for codes with even minimum distance. The condition in

the next theorem is the same as in the previous section.

Theorem 9. Let C be a linear code with even minimum distance d. If

1

2

(

d
d
2

)

>

⌈ |Ad(C)| − 1

2

⌉

holds, then

1

2

(

d
d
2

)

|Ad(C)| −
⌈ |Ad(C)| − 1

2

⌉

|Ad(C)| ≤ |E1
d

2

(C)| ≤ 1

2

(

d
d
2

)

|Ad(C)|.

Proof. First we observe that E1
d/2(C) = LH−(Ad(C)). From the proof of Theorem 7, if

(

d
d/2

)

> |Ad(C)| holds then, for every c ∈ Ad(C), at least |LH−(c)| − ⌈(|Ad(C)| − 1)/2⌉
vectors in LH−(c) does not have common larger halves. Thus we have the lower bound

(
(

d
d/2

)

/2− ⌈(|Ad(C)| − 1)/2⌉)|Ad(C)|.
The upper bound is obtained from the inequality |LH−(Ad(C))| ≤

(

d
d/2

)

|Ad(C)|.

The difference between the upper and lower bounds is upper bounded by |Ad(C)|2/2.

If the fraction |Ad(C)|/
(

d
d/2

)

tends to zero as the code length becomes large, the lower

bound comes close to the upper one.

In what follows, we see some BCH codes, Reed-Muller codes, and random linear

codes satisfy the sufficient conditions under which Tnec contains the minimum weight

codewords and thus can be applied to the upper and lower bounds derived in this section.

Primitive BCH codes

By using the weight distribution [15], we can verify that the (n, k) primitive BCH codes

satisfy the conditions (4.3) and (4.5) for n = 127, k ≤ 64 and n = 63, k ≤ 24.
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Table 4.2: The r-th order Reed-Muller code of length 2m satisfying (4.8).

r m

1 ≥ 4

2 ≥ 6

3 ≥ 8

4 ≥ 10

5 ≥ 11

6 ≥ 13

Extended Primitive BCH codes

By using the weight distribution [15], we can verify that the (n, k) extended primitive

BCH codes satisfy the condition (4.8) for n = 128, k ≤ 64 and n = 64, k ≤ 24.

Reed-Muller codes

For the r-th order Reed-Muller code of length 2m, the minimum distance is 2m−r and

the number of minimum weight codewords |A2m−r(RMm,r)| is presented in Theorem 9

of [26, Chapter 13], which is upper bounded by (2m+1 − 2)r. Then, for a fixed r, the

condition (4.8) is satisfied except for small m. Table 4.2 shows which parameters meets

the condition (4.8).

The fraction |Ad(C)|/
(

d
d/2

)

is upper bounded by

|Ad(C)|
(

d
d/2

) ≤ (2m+1 − 2)r

22m−r
≤ 2(m+1)r−2m−r

.

Thus for a fixed r the fraction tends to zero as m becomes large. This means the upper

and lower bounds in Theorem 9 asymptotically coincide.

Random Linear Codes

A random linear code is a code whose generator matrix has equiprobable entries. That

is, first we set a parameter (n, k), and then we choose a generator matrix from all the 2nk

possible generator matrices with probability 2−nk. It is known that with high probability

the minimum distance equals to nδGV, where 1−H(δGV) = k/n and H(x) is the binary
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entropy function of x. Also it is known that the weight distribution equals to the binomial

distribution. Then,

|Ad(C)| ≈ (2k − 1)

(

n

d

)

2−n ≈
(

n

nδGV

)

2k−n ≈ 2n(H(δGV)+k/n−1) ≈ 1,

where we use the approximation
(

n
nλ

)

≈ 2H(λ), and

|Ad+1(C)| ≈ (2k − 1)

(

n

d + 1

)

2−n ≈ n− d

d + 1

(

n

nδGV

)

2k−n ≈ 2n(H(δGV)+k/n−1) ≈ 1.

Since

(

d
d
2

)

≈
√

2

πd
2d ≈ 2nδ for even d,

(

d
d+1
2

)

≈ 1
√

2π(d + 1)
2d+1 ≈ 2nδ for odd d,

where d = nδ, the conditions (4.5) and (4.8) are satisfied. Since the fractions |Ad+1(C)|/
(

d
(d+1)/2

)

and |Ad(C)|/
(

d
d/2

)

tend to zero, the upper and lower bounds in Theorems 8 and 9 asymp-

totically coincide.

4.6 Concluding Remarks

A lower bound on the number of uncorrectable errors of weight half the minimum distance

has been derived for general linear codes. The conditions for the bounds are not too

restrictive, since Reed-Muller codes and random linear codes meet them. Although trial

sets does not appear in the theorems, they are the underlying idea for the results. A

key observation for the results is that an uncorrectable error of weight half the minimum

distance is a larger half of some minimum weight codeword. An uncorrectable error of

weight greater than half the minimum distance may be a non-minimal uncorrectable error,

that is, such an error is not necessarily a larger half of some codeword. Therefore, it seems

difficult to generalize the bounds to the weight greater than half the minimum distance.





Chapter 5

Relations Between Local Weight

Distributions

5.1 Introduction

The local weight distribution is the weight distribution of the minimal codewords. Stud-

ies on minimal codewords in a linear code are crucial for the performance analysis of the

code under ML decoding. For example, the local weight distribution gives a tighter upper

bound on the error probability over AWGNC than the usual union bound [17]. Minimal

codeword appears in minimum distance decoding algorithms, so called gradient-like de-

coding [4, 23]. The number of minimal codewords in a code determines the complexity of

the decoding of the code. In the context of cryptography, Massey [27] showed that the

access structure of a secret sharing scheme determined by a linear code is characterized

by minimal codewords in the dual code.

Agrell [1] showed an efficient method of examining the minimality of a codeword for a

binary linear code and computed the local weight distributions by examining all the code-

words for some codes. Ashikhmin and Barg [3] determined the local weight distributions

for Hamming codes, extended Hamming codes, second-order Reed-Muller codes. Partial

results for the local weight distributions of Reed-Muller codes are given in [9]. Asymptotic

analysis for long codes and random codes is given in [2, 3]. Mohri et al. [29, 28] proposed

the computational algorithms for cyclic codes. The number of codewords to be examined

is reduced in their work. The basic idea for the reduction was suggested in [1]. Using the

algorithms, they determined the local weight distributions of all the primitive BCH codes

of length 63.

In this chapter, relations between the local weight distributions of a code, its ex-

47
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tended code, and its even weight subcode are studied. For a code that contains codewords

of weight only multiples of four, the local weight distributions of the extended code and

the even weight subcode are determined from that of the original code. Furthermore, if

the extended code is transitive invariant, the local weight distribution of the original code

is obtained from that of the extended code.

5.2 Known Results and Applications

The definition of local weight distribution is presented in Section 2.1.5. First we give the

following relation between the weight distribution and the local weight distribution.

Proposition 2 ([2, 3]). For an (n, k, d) linear code C,

|Li(C)| =







|Ai(C)| for i < 2d,

0 for i > n− k + 1.

If the weight distribution (|A0(C)|, |A1(C)|, . . . , |An(C)|) is known, only |Lw(C)| with

2d ≤ w ≤ n − k + 1 needs to be computed to obtain the local weight distribution.

Generally the complexity of computing the local weight distribution is larger than that of

computing the weight distribution. Therefore, Proposition 2 is useful for obtaining local

weight distributions. When every weight i in a code satisfies i < 2d or i > n− k + 1, the

local weight distribution can be obtained from the weight distribution straightforwardly.

For example, the local weight distribution of the (n, k) primitive BCH code of length 63

for k ≤ 18, of length 127 for k ≤ 29, and of length 255 for k ≤ 45 can be obtained from

their weight distributions.

5.2.1 Known Results

We present known results of the local weight distributions.

Hamming codes

Let C be a (2m − 1, 2m − 1 −m, 3) Hamming code and Cex be the (2m, 2m − 1 − m, 4)

extended Hamming code of C. The local weight distributions of C and Cex are given

in [3].
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|Li(C)| =















1

i!

i−2
∏

j=0

(2m − 2j) for 3 ≤ i ≤ m + 1,

0 for 0 ≤ i < 3, m + 1 < i ≤ 2m − 1.

|Li(Cex)| =















1

i!
2m

i−3
∏

j=0

(2m − 2j) for 4 ≤ i ≤ m + 2,

0 for 0 ≤ i < 4, m + 2 < i ≤ 2m.

Reed-Muller codes

The local weight distribution of the second-order Reed-Muller code RMm,2 is presented

in [3].

|Li(RMm,2)| =







































0 for i = 2m−1 + 2m−1−h (h = 0, 1, 2)

or i > 2m − k + 1,

|Ai(RMm,2)| − 2m+1 + 2

−(2m−1 − 2)|A2m−2(RMm,2)| for i = 2m−1,

|Ai(RMm,2)| otherwise,

where

|A2m−1±2m−1−i(RMm,2)| = 2i(i+1) · (2
m − 1)(2m−1 − 1)(2m−2i+1 − 1)

(22i − 1)(22i−2 − 1) · · · (22 − 1)
for 1 ≤ i ≤

[

1

2
m

]

,

|A2m−1(RMm,2)| = 21+m+(m

2 ) −
∑

j 6=2m−1

|Aj(RMm,2)|.

Borissov et al. [9] derived partial results for the local weight distributions of RMm,r.

They showed that |L2m−2m−r+1(RMm,r)| = 0 for m ≥ 3 and that

|A2m−r+1(RMm,r)| − |L2m−r+1(RMm,r)| = B1
m,r + B2

m,r + B3
m,r − B4

m,r,

where

B1
m,r = 2r−1

[

m

m− r + 1

]

,

B2
m,r =

2r+1 − 4

4

[

m

m− r + 1

]

(

2r+1

3

)

,
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B3
m,r = 2r−1

[

m

m− r

](

2r

[

m

m− r

]

−B3
m,r

′

)

,

B3
m,r

′
=

m−r
∑

l=max{0,m−2r}

2(m−r−l)(m−r−l+1)

[

m− r

l

][

r

m− r − 1

]

,

B4
m,r = 2r−1(2m−r+1 − 1)

[

m

m− r + 1

]

+
1

8
· 2r+1(2r+1 − 1)(2r+1 − 2)(2r+1 − 4)

[

m

m− r + 1

]

,

and

[

m

i

]

is the 2-ary Gaussian coefficient, defined by

[

m

i

]

=















1 for i = 0,
i−1
∏

j=0

2m − 2i

2i − 2j
for i = 1, 2, . . . , m.

BCH codes

The local weight distributions of the primitive BCH codes of length 63 are presented

in [29, 28].

Random codes

We consider the ensemble of random linear codes whose parity check matrices have

equiprobable entries. Let E[|Li(C)|] be the average number of minimal codewords of

weight i taken over the ensemble of random linear codes. Then from [3] we have that

E[|Li(C)|] =















(

n

i

)

1

2n−k

i−2
∏

j=0

(1− 2−(n−k−j)) for i ≤ n− k + 1,

0 otherwise.

5.2.2 Upper bounds on the Error Probability Using LWDs

This section provides some application of the local weight distribution.

First we show how the local weight distribution gives a tighter upper bound on the er-

ror probability over AWGNC. Recall that a codeword c is transmitted as (s(c1), . . . , s(cn))

by using a mapping function s(·) defined in Section 2.1.2. Let s(c) denote the transmitted
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Figure 5.1: Eight vectors in Rn. c0 is the all-zero codeword. The codewords c2, c3, c4, c5

are zero neighbors. The codewords c1, c6, c7 are not zero neighbors.

vectors on AWGNC of c. The set S = {s(c) : c ∈ C} is called a signal set. We define the

Voronoi region of codewords over Rn.

Definition 1 (Voronoi region). The Voronoi region of c ∈ C is a set of closest vectors

in Rn to c, that is,

{x ∈ Rn : dE(x, c) ≤ dE(x, c′) for all c′ ∈ C \ {c}},

where dE(x, y) is the squared Euclidean distance between x and y in Rn.

The shape of the Voronoi region determines almost all significant properties for

communications [17]. If the signal set S is geometrically uniform [17], all the Voronoi

regions have the same shape. A signal set of a binary linear code with BPSK modulation

is geometrically uniform. Then, for a binary linear code C, the Voronoi region of the

all-zero codeword can be used as the representative of all codewords in C. A codeword

whose Voronoi region shares the facet with that of the all-zero codeword is said to be a

zero neighbor (refer to Figure 5.1).

Definition 2 (Zero neighbor). For c ∈ C, define m0 ∈ Rn as m0 = 1
2
(s(0) + s(c)). The

codeword c is a zero neighbor if and only if

dE(m0, s(c)) = dE(m0, s(0)) < dE(m0, s(c
′)) for all c′ ∈ C \ {0, c}.

Agrell [1] made the following observation.
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Proposition 3. For a binary linear code C,

c is a zero neighbor in C if and only if c is a minimal codeword in C.

Let’s consider the error probability Pe of C over AWGNC after ML decoding. Since

C is a linear code, we can assume that the all-zero codeword 0 is transmitted. Thus

Pe = Pr





⋃

c∈C\{0}

E0,c



 (5.1)

≤
∑

c∈C\{0}

Pr [E0,c] , (5.2)

where E0,c denotes an event that 0 is transmitted and the decoding result of the decoder

is c, as defined in Section 2.1.2. The inequality (5.2) is called a union upper bound of Pe.

We observe that E0,c = {r ∈ Rn : dE(r, s(c)) ≤ dE(r, s(0))}. Then the union bound of

Pe using the weight distribution of C is written [14] as

Pe ≤
∑

v∈C\{0}

Q

(
√

w(c)
Eb

σ2

)

=

n
∑

i=1

Ai(C) Q

(
√

i
Eb

σ2

)

, (5.3)

where Q(x) is the complementary error function; Q(x) =
∫∞

x
(2π)−1/2 exp(−z2/2)dz, Eb

is the bit energy, and σ2 is the variance of Gaussian noise.

If c ⊆ c′ for c, c′ ∈ C, then E0,c ⊇ E0,c′. Using the local weight distribution of C,

(5.1) and (5.2) can be rewritten by

Pe = P

[

⋃

c∈C∗

E0,c

]

(5.4)

≤
∑

c∈C∗

P [E0,c]. (5.5)

Inequality (5.5) is called a minimal union bound [16]. A minimal union bound using the

local weight distribution of C is obtained in the same way as (5.3):

Pe ≤
n
∑

i=1

Li(C) Q

(
√

i
Eb

σ2

)

. (5.6)

The right-hand side of (5.6) is strictly smaller than that of (5.3). Agrell pointed out

in [1] that other bounds, related to the union bound, such as Berlekamp’s tangential
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Figure 5.2: Examples of a decomposable codeword and an indecomposable codeword.

union bound [6], seem to be improved in a similar way. For many bounds on the error

probability after ML decoding, see [35, 49] and references therein.

The set of minimal codewords can be used for a minimum distance decoding [4, 23].

The algorithm appears in an optimal hard decision decoding algorithms [23]. The number

of minimal codewords in a code determines the complexity of the decoding. This decoding

method is a type of gradient-like decoding [4]. See [4] for details.

Minimal codewords in a linear code have a link to secret-sharing schemes using

error-correcting codes. Massey showed that the set of minimal codewords in the dual

code completely specifies the access structure of the secret-sharing scheme [27].

5.3 LWDs of Extended Codes and Even Weight Sub-

codes

In this section, we consider relations between the local weight distributions of a code C

of length n, its extended code Cex, and its even weight subcode Ceven. For a codeword

c ∈ C, let c(ex) be the corresponding extended codeword in Cex. We define a decomposable

codeword (see Fig. 5.2).

Definition 3 (Decomposable codeword). c ∈ C is called decomposable if c can be repre-

sented as c = c1 + c2 where c1, c2 ∈ C and c1 ∩ c2 = 0.

Clearly, c is not a minimal codeword if and only if c is decomposable. For even weight

codewords, we introduce an only-odd-decomposable codeword and an even-decomposable

codeword.

Definition 4. Let c ∈ C be a decomposable codeword with even w(c). Then c is said to

be only-odd-decomposable if all the decompositions of c are of the form c1 + c2 with the

odd weight codewords c1, c2 ∈ C. Otherwise, c is said to be even-decomposable.



54 5 Relations Between Local Weight Distributions

Table 5.1: Minimality of c in a linear block code, c(ex) in its extended code, and c in its

even weight subcode.

c in C c(ex) in Cex c in Ceven

Minimal Weight Decomposability Minimal Lemma 15 Minimal Lemma 16

Odd N/A N/A
Yes Even Not decomp. Yes (1) Yes (1)

Odd Decomp. No 2-(a) N/A N/A

No Even Only-odd-decomp. Yes Yes

Even Even-decomp. No 2-(b) No (2)

When c is even-decomposable, there is a decomposition of c, c1 +c2, such that both

w(c1) and w(c2) are even. Then c(ex) is decomposable into c
(ex)
1 + c

(ex)
2 . On the other

hand, for an only-odd-decomposable codeword c = c1 +c2, c(ex) is not decomposable into

c
(ex)
1 + c

(ex)
2 for any decompositions.

The relation between C and Cex with respect to minimality is given in the following

theorem, which is also summarized in Table 5.1.

Lemma 15. 1. For a minimal codeword c in C, c(ex) is a minimal codeword in Cex.

2. For a codeword c which is not a minimal codeword in C, the following (a) and (b)

hold:

(a) When w(c) is odd, c(ex) is not a minimal codeword in Cex.

(b) When w(c) is even, c(ex) is a minimal codeword in Cex if and only if c is

only-odd-decomposable in C.

Proof. 1. Suppose that c(ex) is not a minimal codeword in Cex. Then c(ex) is decomposable

into c
(ex)
1 +c

(ex)
2 . Hence, c is decomposable into c1+c2, contradicting the indecomposability

of c.

2. Suppose that c is decomposed into c = c1 + c2. (a) Since w(c) is odd, the sum of

the parity bits in c
(ex)
1 and c

(ex)
2 is one. Also, the parity bit in c(ex) is one. Then c(ex) is

decomposable into c
(ex)
1 +c

(ex)
2 , and c(ex) is not a minimal codeword in Cex. (b) Since w(c)

is even, the parity bit in c(ex) is zero. (If part) Suppose that c(ex) is not a minimal codeword

in Cex. Then there exists a decomposition c(ex) = c
(ex)
1 + c

(ex)
2 . Because the parity bit in
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Figure 5.3: Examples of an even-decomposable codeword and an odd-decomposable code-

word mentioned in the proof of Lemma 15-2-(b).

c(ex) is zero, the parity bits in c
(ex)
1 and c

(ex)
2 must be zero. Thus, c is even-decomposable

into c1+c2, contradicting the assumption that c is only-odd-decomposable. (Only if part)

Suppose that c is even-decomposable. Then there is a decomposition such that the parity

bits in both c
(ex)
1 and c

(ex)
2 are zero. For such a decomposition, c(ex) is decomposable into

c
(ex)
1 + c

(ex)
2 , and c(ex) is not a minimal codeword in Cex. (see Fig. 5.3).

From 2-(b) of Lemma 15, there may be codewords that are not minimal codewords

in C, although their extended codewords are minimal codewords in Cex. Such codewords

are the only-odd-decomposable codewords. For investigating relations of local weight

distributions between a code and its extended code, only-odd decomposable codewords

are important.

Let Ni(C) denote the set of only-odd-decomposable codewords with weight i in C.

The following theorem is a direct consequence of Lemma 15.

Theorem 10. For a code C of length n and an integer i with 0 ≤ i ≤ ⌊n/2⌋,

|L2i(Cex)| = |L2i−1(C)|+ |L2i(C)|+ |N2i(C)|. (5.7)

From Theorem 10, if no only-odd-decomposable codeword exists in C, then the local

weight distributions of Cex are obtained from that of C. Next we give a useful sufficient

condition under which no only-odd-decomposable codeword exists.

Theorem 11. If all the weights of codewords in Cex are multiples of four, then no only-

odd-decomposable codeword exists in C.

Proof. If c ∈ C is an only-odd-decomposable codeword and is decomposed into c1+c2, the

weights of c1 and c2 can be represented as w(c1) = 4i−1 and w(c2) = 4j−1 where i and

j are integers. Then w(c) = w(c1 +c2) = w(c1)+w(c2) = (4i−1)+(4j−1) = 4i+4j−2,

contradicting the fact that w(c) is a multiple of four.
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For example, all the weights of codewords in the (128, k) extended primitive BCH

code with k ≤ 57 are multiples of four. The parameters of the Reed-Muller codes with

which all the weights of codewords are multiples of four are given by Corollary 13 of

Chapter 15 in [26]. From the corollary, the third-order Reed-Muller codes of length

n ≥ 128 have only codewords whose weights are multiples of four.

Although the local weight distribution of Cex for these codes can be obtained from

that of C by using Theorem 10, in order to obtain the local weight distribution of C from

that of Cex, we need to know the number of minimal codewords with parity bit one. In

Section 5.4, we will show a method of obtaining the number of minimal codewords with

parity bit one for a class of transitive invariant codes.

A similar relation to that between C and Cex holds between C and Ceven. This

relation is given in Lemma 16 without proof (see Table 5.1).

Lemma 16. 1. For an even weight minimal codeword c in C, c is a minimal codeword

in Ceven.

2. For an even weight codeword c which is not a minimal codeword in C, c is a minimal

codeword in Ceven if and only if c is only-odd-decomposable in C.

From Lemma 16, we derive Theorem 12.

Theorem 12. For a code C of length n and an integer i with 0 ≤ i ≤ ⌊n/2⌋,

|L2i(Ceven)| = |L2i(C)|+ |N2i(C)|. (5.8)

5.4 LWDs From Transitive Invariant Extended Codes

A transitive invariant code is a code which is invariant under a transitive group of per-

mutations. A group of permutations is said to be transitive if for any two symbols in a

codeword there exists a permutation that interchanges them [31]. The extended prim-

itive BCH codes and Reed-Muller codes are transitive invariant codes. For a transitive

invariant Cex, a relation between the weight distributions of C and Cex is presented in

Theorem 8.15 in [31]. A similar relation holds for local weight distribution.

Lemma 17. If Cex is a transitive invariant code of length n + 1, then the number of

minimal codewords in C of weight i with parity bit one is i
n+1
|Li(Cex)|.

Proof. This lemma can be proved in a similar way to the proof of Theorem 8.15. Arrange

all minimal codewords with weight i in a column. Next, interchange the j-th column
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Figure 5.4: The directions of determining the local weight distributions between C, Cex,

and Ceven.

and the last column, which is the parity bit column, for all these codewords with the

permutation. All the resulting codewords have weight i and must be the same as the

original set of codewords. Thus, the number of ones in the j-th column and that in

the last column are the same. Denote this number li, which is the same as the number

of minimal codewords of weight i with parity bit one. Then the number of total ones

in the original set of codewords is (n + 1) li, or |Li(Cex)| times the weight i. Thus,

(n + 1) li = i|Li(Cex)|, and li = i
n+1
|Li(Cex)|.

It is clear that there are n+1−i
n+1
|Li(Cex)|minimal codewords with weight i whose parity

bit is zero from this lemma. The following theorem is obtained from Lemmas 15 and 17.

Theorem 13. Let Cex be a transitive invariant code of length n + 1. Then

|Li(C)| =























i + 1

n + 1
|Li+1(Cex)| for odd i,

n + 1− i

n + 1
|Li(Cex)| − |Ni(C)| for even i.

(5.9)

Therefore, for a transitive invariant code Cex having no only-odd-decomposable code-

word in C, the local weight distributions of C can be obtained from that of Cex. After

computing the local weight distribution of C, that of Ceven can be obtained by using

Theorem 12.

5.5 Concluding Remarks

In this chapter, the relations between the local weight distributions of a code, its extended

code, and its even weight subcode are revealed. Also the relation between the local weight
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distributions of an transitive invariant code and its punctured code are investigated. See

Figure 5.4 for the directions of determining the local weight distributions.

Borissov and Manev [9] also studied a similar relation. Here we describe the dif-

ferences. They derived relations between the local weight distributions of a code, its

extended code, and its even weight subcode, but they did not clarify the existence of

only-odd-decomposable codewords, which play an important role in our results. There-

fore, our results in this chapter contain those in [9] about the relations between the

distributions, although their results are not the main results of [9].



Chapter 6

Algorithms for Computing Local

Weight Distributions

6.1 Introduction

In this chapter, a method for computing the local weight distribution using the auto-

morphism group of the code is presented. The complexity of computing the local weight

distribution, as well as that for the weight distribution, becomes large as the dimension of

the code is large. Agrell noted in [1] that the automorphism group of codes helps reduce

the complexity. Using the automorphism group of cyclic codes, i.e., cyclic permutations,

Mohri et al. obtained the local weight distributions of the (63, k) primitive BCH codes for

k ≤ 45 [28, 29]. This invariance property for cyclic permutations can be generalized to

an invariance property for any group of permutations. Using the invariance property for

a larger group of permutations, we can reduce the number of representative codewords.

However, it is not easy to obtain the representative codewords and the number of the

equivalent codewords.

In order to use the generalized invariance property, the invariance property is applied

to the set of cosets of a subcode rather than the set of codewords. This application reduces

the complexity of finding the representatives, which is much smaller than the complexity

of checking whether every representative is a minimal codeword. This idea is used in [18]

for computing the weight distribution of extended binary primitive BCH codes. In this

chapter, we show that this idea can be applicable to computing local weight distribution.

Section 6.2 presents the invariance property and Section 6.3 shows the coset par-

titioning technique for computing the local weight distribution. These are key ideas of

our algorithm. In Section 6.4, we describe the proposed algorithm and its complexity.

59
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In Section 6.5, we improve the algorithm by considering the code tree structure and the

invariance property in cosets. We apply the invariance property in cosets to the (256, 93)

third-order Reed-Muller code for computing its local weight distribution in Section 6.5.3.

The tables of the local weight distributions determined in our work are listed in Sec-

tion 6.6.

6.2 Invariance Property

The algorithms in [28, 29] uses the following invariance property for cyclic permutations.

Proposition 4 ([28, 29]). Let C be a binary cyclic code. A codeword c ∈ C is a minimal

codeword if and only if any cyclic permuted codeword of c is a minimal codeword.

Corollary 4. Let C be a binary cyclic code, and σic be an i times cyclic-permuted code-

word of c ∈ C. Consider a set P = {c, σc, σ2c, . . . , σp(σ,c)−1c}, where p(σ, c) is the period

of σ, which is the minimum i such that σic = c. Then (1) if c is a minimal codeword,

all codewords in the set P are minimal codewords; and otherwise, (2) all codewords in P

are not minimal codewords.

In the algorithms, the representative codeword of cyclic permutations (a representa-

tive codeword of P in Corollary 4) and the number of the equivalent codewords (the size of

P ) are generated efficiently. The complexity is about 1/n that of the brute force method.

The local weight distributions of the (63, k) primitive BCH codes with k = 51, 57 are

obtained by using another algorithm [29]. The latter algorithm generates the representa-

tive codewords once or more, although the former algorithm generates the representative

codewords only once.

The following proposition implies that the algorithms in [28, 29] can be applied to

extended cyclic codes straightforwardly.

Proposition 5. Let C and Cex be a binary cyclic code and its extended code, respectively.

For c ∈ C, let c(ex) be the corresponding extended codeword in Cex, that is, c(ex) is obtained

from c by adding the over-all parity bit. For any cyclic permuted codeword σic of c,

(σic)(ex) is a minimal codeword in Cex if and only if c(ex) is a minimal codeword in Cex.

Proof. (If part) Suppose that (σic)(ex) is not a minimal codeword in Cex. There exists

u ∈ C such that (σiu)(ex) ⊂ (σic)(ex). Then u(ex) ⊂ c(ex), and this contradicts the fact

that c(ex) is a minimal codeword in Cex. (Only if part) Suppose that c(ex) is not a minimal

codeword in Cex. There exists u ∈ C such that u(ex) ⊂ c(ex). Hence, (σiu)(ex) ⊂ (σic)(ex),

and this contradicts the fact that (σic)(ex) is a minimal codeword in Cex.
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From Corollary 4 and Proposition 5, the minimalities of codewords in P ′ = {c(ex),

(σc)(ex), (σ2c)(ex), . . . , (σp(σ,c)−1c)(ex)} are the same. To compute the local weight distribu-

tion of an extended cyclic code Cex, we only have to check minimality for the representative

extended codewords of cyclic permutations. Thus, we can compute the local weight dis-

tribution of an extended cyclic code in the same way as that in the algorithms in [28, 29]

for representative codewords with respect to the cyclic group of permutations. However,

extended primitive BCH codes are closed under the affine group of permutations, which

are larger than the cyclic group of permutations. Using a larger group of permutations,

the complexity of computing the local weight distribution may be reduced. This is a basic

observation for the computational approach.

An invariance property of minimality under the automorphism group is given in the

following theorem.

Theorem 14 (Invariance property). Let π ∈ Aut(C) and c ∈ C. Then πc is a minimal

codeword in C if and only if c is a minimal codeword in C.

Proof. Suppose that c is a minimal codeword and πc is not a minimal codeword. There

exists a nonzero codeword c′ ∈ C such that πc ⊃ c′. Since Aut(C) is a group, there exists

c′′ ∈ C such that c′ = πc′′. Thus πc ⊃ πc′′, and c ⊃ c′′, contradicting the fact that c is

a minimal codeword.

This theorem derives the following corollary.

Corollary 5. For c ∈ C, consider a set P = {πc : ∀π ∈ Aut(C)}. Then (1) if c is

a minimal codeword, then all codewords in S are minimal codewords; otherwise, (2) all

codewords in P are not minimal codewords.

To use this generalized invariance property, we apply the invariance property to the

set of cosets of a subcode rather than the set of codewords.

6.3 Coset Partitioning

For a binary (n, k) linear code C and its linear subcode C ′ with dimension k′, let C/C ′

denote the set of cosets of C ′ in C, that is, C/C ′ = {c + C ′ : c ∈ C \ C ′}. Then

|C/C ′| = 2k−k′

and C =
⋃

D∈C/C′

D. (6.1)
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Definition 5 (Local weight subdistribution for cosets). The local weight subdistribution

for a coset D ∈ C/C ′ (with respect to C) is the weight distribution of minimal codewords

of C in D. The local weight subdistribution for D is (|LS0(D)|, |LS1(D)|, . . . , |LSn(D)|),
where

LSi(D) = Li(C) ∩D,

with 0 ≤ i ≤ n.

Then, from (6.1), the local weight distribution of C is given as the sum of the local

weight subdistributions for the cosets in C/C ′, that is,

|Li(C)| =
∑

D∈C/C′

|LSi(D)|.

The next theorem gives an invariance property under permutations for cosets.

Theorem 15 (Invariance property for cosets). For D1, D2 ∈ C/C ′, the local weight sub-

distribution for D1 and that for D2 are the same if there exists π ∈ Aut(C) such that

πD1 = D2.

Proof. For any codewords c ∈ D1, from Theorem 14, πc ∈ D2 is a minimal codeword if

and only if c is a minimal codeword. Therefore, the local weight subdistribution for D1

and that for D2 are the same.

This theorem is a condition for cosets having the same local weight subdistribution.

The following lemma gives the set of all permutations by which every coset in C/C ′ is

permuted into one in C/C ′.

Lemma 18. For a linear code C and its linear subcode C ′,

{π : πD ∈ C/C ′ for all D ∈ C/C ′} = Aut(C) ∩Aut(C ′).

Proof. Let π ∈ Aut(C)∩Aut(C ′). For a coset c1+C ′ ∈ C/C ′, suppose that πc1 ∈ c2+C ′.

For any codeword c1 + u1 ∈ c1 + C ′,

π(c1 + u1) = πc1 + πu1

= c2 + u2 + πu1, u2 ∈ C ′,

= c2 + (u2 + πu1) ∈ c2 + C ′.

Thus πc1 + C ′ = c2 + C ′ ∈ C/C ′. Then {π : πD ∈ C/C ′ for all D ∈ C/C ′} ⊇ Aut(C) ∩
Aut(C ′).
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Let π ∈ {ρ : ρD ∈ C/C ′ for all D ∈ C/C ′}. For any codeword c ∈ C, c must be in

either coset in C/C ′, and then πc ∈ C. Thus, π ∈ Aut(C). C ′ itself is one of the cosets

in C/C ′. For any codeword u ∈ C ′, πu ∈ C ′ because πC ′ = C ′. Thus π ∈ Aut(C ′). Then

{π : πD ∈ C/C ′ for any D ∈ C/C ′} ⊆ Aut(C) ∩Aut(C ′).

Aut(C) ∩ Aut(C ′) (or even Aut(C)) is generally not known. Only subgroups of

Aut(C) ∩ Aut(C ′) are known. Therefore, we use a subgroup.

Definition 6. Let Π ⊆ Aut(C) ∩ Aut(C ′). For D1, D2 ∈ C/C ′, we denote D1 ∼Π D2 if

and only if there exists π ∈ Π such that πD1 = D2.

Proposition 6. The relation “∼Π” is an equivalence relation on C/C ′ if Π forms a group.

Proof. Let D1, D2, D3 ∈ C/C ′.

(Reflexivity: D1 ∼Π D1) Since the identity permutation π0 is in Π, D1 ∼Π D1.

(Symmetry: D1 ∼Π D2 → D2 ∼Π D1) Suppose that D1 ∼Π D2 and πD1 = D2 for π ∈ Π.

Since Π forms a group, there exists ρ ∈ Π such that ρπD1 = D1. Then ρD2 = D1, and

D2 ∼Π D1.

(Transitivity: D1 ∼Π D2, D2 ∼Π D3 → D1 ∼Π D3) Suppose that D1 ∼Π D2 and D2 ∼Π

D3. There exists π, ρ ∈ Π such that πD1 = D2, ρD2 = D3. Then D3 = ρD2 = ρπD1.

Since ρπ ∈ Π, D1 ∼Π D3.

When the set of cosets are partitioned into the equivalence classes by the relation

“∼Π”, the local weight subdistributions for cosets which belong to the same equivalence

class are the same.

We give a useful theorem for partitioning the set of cosets into equivalence classes

by the relation “∼Π.”

Theorem 16. Let Π ⊆ Aut(C) ∩ Aut(C ′). For D1, D2 ∈ C/C ′ and π ∈ Π, we have

D1 ∼Π D2 if πc1 ∈ D2 for any c1 ∈ D1.

Proof. Let πc1 = c2 ∈ D2. Any codeword in D1 is represented by c1 + c (c ∈ C ′). Then

π(c1 + c) = πc1 + πc

= c2 + πc.

Since π ∈ Aut(C ′), πc is in C ′. Thus πD1 = D2.
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Theorem 16 implies that, to partition the set of cosets into equivalence classes,

we only need to check whether the representative codeword of a coset is permuted into

another coset. After partitioning cosets into equivalence classes, the local weight subdis-

tribution for only one coset in each equivalence class needs to be computed. Thereby the

computational complexity is reduced. That is,

|Li(C)| =
∑

D∈RCΠ(C/C′)

eΠ(D) · |LSi(D)|, (6.2)

where RCΠ(C/C ′) is the set of representative cosets obtained by partitioning C/C ′ into

the equivalence classes with the set of permutations Π ⊆ Aut(C) ∩ Aut(C ′), and eΠ(D)

is the number of equivalent cosets to D when using Π for partitioning cosets.

6.4 An Algorithm for Computing LWDs

On the basis of the method of partitioning the set of cosets described in the previous

section, we can compute the local weight distribution as follows (refer to Figure 6.1):

1. Choose a subcode C ′ and Π ⊆ Aut(C) ∩Aut(C ′).

2. Partition C/C ′ into the equivalence classes with permutations in Π, and obtain

RCΠ(C/C ′) and eΠ(D) for every D ∈ RCΠ(C/C ′).

3. Compute the local weight subdistributions for every D ∈ RCΠ(C/C ′).

4. Compute the local weight distribution of C from (6.2).

Figure 6.2 shows the details of the algorithm. Step 2 can be skipped if RCΠ(C/C ′) and

eΠ(D) for D ∈ RCΠ(C/C ′) are already known.

6.4.1 Coset Partitioning

Our implementation of Step 2 of the algorithm is based on Theorem 16 and Proposition 6.

Let H ′ be a parity check matrix of C ′ with

H ′ =

(

H0

H

)

,

where H is a parity check matrix of C and H0 is an n × (k − k′) matrix. To partition

cosets efficiently, we use the following condition

πc + C ′ = c′ + C ′ if and only if (πc)HT
0 = c′HT

0 ,
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Figure 6.1: Diagram of the procedure of the proposed algorithm.
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Input: G : a generator matrix of an (n, k, d) linear code C.

G′ : a generator matrix of a linear subcode C ′.

RCΠ(C/C ′) : the set of representative cosets obtained by partitioning C/C ′

into the equivalence classes with Π.

eΠ(D) for D ∈ RCΠ(C/C ′) : the number of equivalent cosets to D when using

Π for partitioning cosets.

Output: L[i](0 ≤ i ≤ n) : the local weight distribution of C.

Algorithm:

For i← 0 to n:

L[i]← 0.

Generate the cosets C/C ′.

Partition the cosets into the equivalent classes.

For every representative coset D ∈ RCΠ(C/C ′):

num← eΠ(D).

For every codeword u in D:

w ← the Hamming weight of u.

If w < 2d:

L[w]← L[w] + num.

If u is turned out to be a minimal codeword:

L[w]← L[w] + num.

Figure 6.2: An algorithm for computing the local weight distribution.
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where HT
0 represents the transpose of H0.

Using a table with size 2k−k′

, we need to compute the syndromes of length k− k′ for

all the permuted coset leaders to partition these cosets into the equivalence classes. The

computational complexity of partitioning cosets into the equivalence classes is O(n(k −
k′)2k−k′|Π|). If Π forms a group, the actual complexity would be much small. Suppose

that πc+C ′ = c′+C ′. After we found the equivalent cosets of c+C ′, including c′+C ′, we

need not to find the equivalent cosets for c′ + C ′ because the equivalent cosets of c′ + C ′

are equal to that of c + C ′ when Π forms a group. Then the complexity of partitioning

cosets into the equivalence classes is O(n(k − k′)e|Π| + 2k−k′

) where e is the number of

equivalence classes in C/C ′. The complexity O(2k−k′

) is for computing syndromes and

the bookkeeping operations for the 2k−k′

coset leaders. Since e seems to be much smaller

than 2k−k′

, although we cannot know e before running a coset partitioning algorithm, the

actual complexity of partitioning cosets into into equivalence classes would be much small

when Π forms a group.

6.4.2 Checking Minimality

We show two algorithms for checking minimality of codewords. For v ∈ C ′, let

Ccov(c) = {c′ ∈ C : c′ ⊆ c}.

Then Ccov(c) is a linear subcode of C for c ∈ C. Note that a codeword c is a minimal

codeword if and only if C(c) = {0, c}. Hence checking the minimality of c is whether

the dimension of C(v), denoted by dim(C(c)), is one or not. To obtain the dimension of

Ccov(c) we can consider two methods: methods G and H.

G Method

G Method uses a generator matrix of C, denoted by G. The G Method derives a generator

matrix of Ccov(c) from G and checks the dimension of Ccov(c). The algorithm of the G

Method is shown in Figure 6.4. This algorithm is equivalent to the following G Rule

presented in [2].

G Rule : Let G0(C, c) denote the matrix formed by the columns of a generator matrix

G of C corresponding to positions where a given codeword c ∈ C has zeros. Then c is a

minimal codeword if and only if the rank of G0(C, c) is k− 1 where k is the dimension of

C.
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Input: G : a generator matrix of C, H : a parity check matrix of C.

G′ : a generator matrix of C ′, H ′ : a parity check matrix of C ′

Π : a subgroup of Aut(C) ∩Aut(C ′).

Output: class[i] (1 ≤ i ≤ 2k−k′

) : eΠ(D) for D ∈ RCΠ(C/C ′).

Algorithm:

Generate the coset leaders, v1, v2, . . . , v2k−k′ from G and G′.

Generate H0 from H and H ′ to calculate the syndrome of codewords.

For i← 1 to 2k−k′

:

class[i]← 0.

synd2index[viH
T
0 ]← i.

For i← 1 to 2k−k′

:

If class[i] = 0:

class[i]← 1.

For every π ∈ Π:

If class[ synd2index[πviH
T
0 ] ] = 0:

class[ synd2index[πviH
T
0 ] ] = −1.

class[i]← class[i] + 1.

Figure 6.3: An algorithm for coset partitioning.
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Input: c ∈ C : a codeword to be checked.

g1, g2, . . . , gk : the rows of a generator matrix of C.

Output: 1 : if c is a minimal codeword,

0 : otherwise.

Algorithm:

i← 0.

For every p in {1, 2, . . . , n} \ S(c):

first← 1.

For j ← i + 1 to n:

If the p-th element in gj is 0:

If first = 1 then:

pivot← j.

first← 0.

else:

gj ← gj + gpivot.

If first = 0 then:

Swap(gi, gpivot).

i← i + 1.

If i = k − 1 then:

return 1.

return 0.

Figure 6.4: G Method : An algorithm for checking minimality using a generator matrix

G.
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H Method

H Method uses a parity check matrix of C, denoted by H . The H Method derives a parity

check matrix of Ccov(c) from H and checks the dimension of Ccov(c). The algorithm of

the H Method is shown in Figure 6.5. This algorithm is equivalent to the following H

Rule presented in [2].

H Rule : Let H1(C, c) denote the matrix formed by the columns of a parity check matrix

H of C corresponding to positions where a given codeword c ∈ C has ones. Then c is a

minimal codeword if and only if the rank of H1(C, c) is w(c)− 1.

6.4.3 Complexity

Here, we analyze the computational complexity of the algorithm. Let C be an (n, k) linear

code and C ′ be an (n, k′) linear subcode of C.

Time complexity

We can use G Method and H Method to check whether a given codeword is a minimal

codeword. The time complexity of checking one codeword is O(n2k) and O(n2(n − k))

for G Method and H Method, respectively. Thus, we use G Method for codes with rate

less than 1/2. Since the number of codewords in each coset is 2k′

, the total number of

codewords to be checked by the procedure is |RCΠ(C/C ′)|2k′

. Hence, the time complexity

of Step (3) of the proposed algorithm using G Method is O(n32k′|RCΠ(C/C ′)|). The time

complexity of Step (2), partitioning into the equivalence classes, is O(n(k − k′)2k−k′|Π|).
Therefore, The time complexity of the entire algorithm is O(n32k′|RCΠ(C/C ′)| +

n(k − k′)2k−k′|Π|). When k′ is chosen as k′ > k/2, then 2k′

> 2k−k′

, and the complexity

of partitioning into the equivalence classes is much smaller than of computing the local

weight subdistributions for cosets.

Space complexity

The space complexity of checking minimality is very small, because we need space to store

only a generator matrix or a parity check matrix of C, which is O(n2). On the other hand,

the space complexity of partitioning cosets into equivalence classes is much larger. We

need space to store the entries proportional to 2k−k′

, which is O((k − k′)2k−k′

). We need

O(n(n− k′)) space to store the parity check matrices of C and C ′. The space complexity

of the entire algorithm is O(n2 + (k − k′)2k−k′

).
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Input: c ∈ C : a codeword to be checked.

h1, h2, . . . , hn−k : the rows of a parity check matrix of H .

Output: 1 : if c is a minimal codeword,

0 : otherwise.

Algorithm:

i← 0.

For every p in S(c):

first← 1.

For j ← i + 1 to n− k:

If the p-th element in hj is 0:

If first = 1 then:

pivot← j.

first← 0.

else:

hj ← hj + hpivot.

If first = 0 then:

Swap(hi, hpivot).

i← i + 1.

If i = w − 1 then:

return 1.

else:

return 0.

Figure 6.5: H Method : An algorithm for checking minimality using a parity check matrix

H .
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6.4.4 Selection of a Subcode

To reduce the number of codewords that are checked minimality, we need to choose the

subcode C ′ properly for which the number of permutations in Π ⊆ Aut(C) ∩ Aut(C ′) is

larger.

If there are several subcodes with the same Π, then the subcode with the smaller

dimension should be chosen to minimize the number of codewords that need to be checked,

as long as the complexity of partitioning cosets into equivalence classes is relatively small.

6.5 Improvements of the Algorithm

In this section, some improvements of the proposed algorithm for computing the local

weight distribution are shown.

6.5.1 Code Tree Structure

We consider reducing the complexity of checking minimality in a coset of C ′ by using the

code tree structure of the coset. For simplicity, we consider C ′ itself as the coset. Recall

that checking the minimality of c is whether dim(Ccov(c)) is one or not. For c ∈ C ′ and

i with 1 ≤ i ≤ n, let

Ccov(c, i) = {c′ ∈ C : S(c′) ∩ {1, . . . , i} ⊆ S(c) ∩ {1, . . . , i}}.

Therefore, Ccov(c, n) = Ccov(c). An implementation to construct Ccov(c) is as follows:

Construct Ccov(c, 1) from C, and Ccov(c, 2) from Ccov(c, 1), and C(c, 3) from Ccov(c, 2),

and so on. This procedure can be done by using the generator matrix of C.

A code tree of a binary (n, k) code is an edge-labeled tree with depth n. Either 0

or 1 is labeled on each edge. For the code tree of a code C, the sequence of edge labels

along each path from the root to a leaf is a codeword of C. There are 2k leaves on the

tree. For example, the code tree of C = {0000, 0011, 1001, 1010} is shown in Figure 6.6.

Now, we consider reducing the complexity of computing Ccov(c) for c ∈ C ′. For i

with 1 ≤ i ≤ n, let

C ′f
i = {(c′1, c′2, . . . , c′n) ∈ C ′ : c′j = 0 for 1 ≤ j ≤ i}.

C ′f
i is the future subcode of C ′ at time i. For c ∈ C ′, c + C ′f

i shares the same path to

depth i in the code tree. This means, if we construct Ccov(c, i) once, we do not need to

construct Ccov(c
′, i) for other c′ ∈ c + C ′f

i later because Ccov(c, i) = Ccov(c
′, i). We can
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Figure 6.6: The code tree of the code {0000, 0011, 1001, 1010}.

save the computational complexity of constructing Ccov(c
′, i) from C for each c′ ∈ c+C ′f

i.

However, computing Ccov(c
′, i) for all c′ ∈ C ′ along with the code tree is space-consuming.

Therefore, we take the following method of checking minimality of them.

• Choose an integer i with 1 ≤ i ≤ n.

• For each coset c + C ′f
i ∈ C ′/C ′f

i, construct Ccov(c, i) from C.

– For each c′ ∈ c + C ′f
i, construct Ccov(c

′) from Ccov(c, i)

and investigate dim(Ccov(c
′)).

We can construct the generator matrix of C ′f
i by row operations of the generator matrix of

C ′ (see Figure 6.7). In Figure 6.7, the dimension of C ′f
i is k′f

i. We should choose i properly

in order to make C ′f
i large and the complexity of examining the dimension of Ccov(c

′) from

Ccov(c, i) for each c′ ∈ C ′f
i small; that is, make k′f

i large and i large. The k′f
i · i zero matrix

in Figure 6.7 varies depending on the code tree structure of C ′. For extended binary

primitive BCH codes, permuting the symbol positions of codewords properly makes the

k′f
i · i matrix larger [24]. To choose i properly, we should estimate the effect by using the

above technique.

Estimating precisely how the computational complexity is reduced is not easy. We

will estimate the effect roughly. When dim(Ccov(c
′)) = 1, dim(Ccov(c

′)) is found to be

one before constructing Ccov(c
′), since Ccov(c

′, j) for i ≤ j ≤ n may be equal to Ccov(c
′)

for certain i with i < n. Let iend be the average position i at which dim(Ccov(c, i)) is

found to be one or not for c ∈ C. We observe that the number of minimal codewords is

much more than that of non-minimal codewords. For example, the rate of the number of
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0

k′

n

G′
k′ − k′f

i

k′f
i

i n− i

Figure 6.7: A way of constructing C ′f
i from the generator matrix G′.

minimal codewords to the number of all codewords is 0.9994 · · · for the (128, 43) primitive

BCH code. For any c ∈ C and 1 ≤ i ≤ iend, assume:

dim(Ccov(c, i)) =
iend − i

iend
(k − 1) + 1.

This equation means that dim(Ccov(c, i)) decreases linearly with i and is equal to k (or

1) when i = 0 (or i = iend). The complexity of computing Ccov(c, i + 1) from Ccov(c, i) is

proportional to dim(Ccov(c, i)). Thus, the complexity is given as a · dim(Ccov(c, i)) where

a is a nonzero constant.

Consider the case i0 is chosen as i for using the technique described in this section.

Let U1 be the complexity of computing Ccov(c), which is equal to the complexity of check-

ing minimality without the technique, U2 be the complexity of computing Ccov(c, iend)

from Ccov(c, i0), and U3 be the average complexity of computing Ccov(c, i0). Then

U1 =
a(dim(C)− 1) iend

2
=

a(k − 1)iend

2
,

U2 =
a(dim(C, i0)− 1)(iend − i0)

2

=
a(iend − i0)

2(k − 1)

2 iend
,

U3 = U1 − U2.

Let Ri0 be the relative complexity of checking minimality with the technique and without

the technique. Then

Ri0 =
U3 + U2 · 2k′f

i0

U1 · 2k′f
i0

=

(

1− U2

U1

)

1

2k′f
i0

+
U2

U1
,

where
U2

U1
=

(

iend − i0
iend

)2

.
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Figure 6.8: Relative complexity Ri with iend = 100 and the dimension k′f
i of C ′f

i for the

(128, 50) extended BCH code using the (128, 29) code as a subcode.

We estimated Ri0 for the case of the (128, 50) extended BCH code. In this case, the

(128, 29) code is chosen as the subcode C ′ and the number of representative cosets is

258. To determine iend, we use 215 · 258 codewords by choosing 215 codewords randomly

from each of the 258 representative cosets. For every codeword c in such codewords, we

examined the position in which dim(Ccov(c)) is found to be one or not. Then the average

was 100, that is, iend = 100. Since k′f
i0 depends on i0, we investigated k′f

i0 and computed

Ri0 for every i0 (1 ≤ i0 ≤ n) (see Figure 6.8). In this investigation, we use the permutation

technique for making k′f
i0 and i0 larger proposed in [18] for extended BCH codes. From

Figure 6.8, the complexity of checking minimality would reduced by 1/2 for i0 = 33 and

48. k′f
i0

= 5, 2 for i0 = 33, 48, respectively. Actually, for the (128, 50) extended BCH code

and the (128, 29) extended BCH subcode, the complexity is reduced by about 1/2 when

we choose i0 = 48.

If the dimension of the subcode is small, k′f
i may become small and the effect of using

the code tree structure is small. We should choose the subcode by considering the effect

of using the code tree structure.
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6.5.2 Invariance Property in Cosets

In the proposed algorithm, the invariance property for minimality is applied to the set

of cosets of a subcode rather than the set of codewords. This reduces the complexity of

finding the representatives. However, we do not use the invariance property completely.

That is, the invariance property is not used for codewords in cosets. In computing the

local weight subdistribution for a coset, we can apply the invariance property to codewords

in the coset. An invariance property in a coset is given in the following theorem.

Theorem 17. For a coset c + C ′ ∈ C/C ′, π ∈ {ρ : ρc ∈ c + C ′}, and c′ ∈ c + C ′, πc′ is

a minimal codeword in C if and only if c′ is a minimal codeword in C.

No efficient way is known for generating the representative codewords in a coset as

in a code. Therefore, we use a similar method; Just as we applied the invariance property

to the set of cosets in a code rather than the set of codewords in the code, we apply the

invariance property to the set of cosets in a coset rather than the set of codewords in the

coset. Thus, we consider a coset c + C ′ ∈ C/C ′ the set of cosets of C ′′, where C ′′ is a

linear subcode of C ′.

For a coset c+C ′ ∈ C/C ′, let (c+C ′)/C ′′ denote the set of all cosets of C ′′ in c+C ′,

that is, (c + C ′)/C ′′ = {c + c′ + C ′′ : c′ ∈ C ′ \ C ′′}. Then

|(c + C ′)/C ′′| = 2k′−k′′

and c + C ′ =
⋃

E∈(c+C′)/C′′

E,

where k′ and k′′ are the dimensions of C ′ and C ′′. We also call the weight distribution

of minimal codewords in E ∈ (c + C ′)/C ′′ the local weight subdistribution for E. The

following theorem gives an invariance property for cosets in (c + C ′)/C ′′.

Theorem 18. For E1, E2 ∈ (c + C ′)/C ′′, the local weight subdistribution for E1 and that

for E2 are the same if there exists π ∈ {ρ : ρc ∈ c + C ′, ρ ∈ Aut(C)∩Aut(C ′)} such that

πE1 = E2.

We consider partitioning (c + C ′)/C ′′ into equivalence classes. Permutations which

are used to partition cosets into equivalence classes are presented in the following lemma.

Lemma 19. For a coset c + C ′ ∈ C/C ′,

{π : πE ∈ (c + C ′)/C ′′ for all E ∈ (c + C ′)/C ′′}
= {ρ : ρc ∈ c + C ′, ρ ∈ Aut(C) ∩ Aut(C ′) ∩Aut(C ′′)}.
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Proof. Let π ∈ {ρ : ρc ∈ c + C ′, ρ ∈ Aut(C) ∩ Aut(C ′) ∩ Aut(C ′′)}. For a coset

c + c1 + C ′′ ∈ (c + C ′)/C ′′, suppose that πc = c + c2, c2 ∈ C ′ and πc1 = c3 ∈ C ′. For

any codeword c + c1 + c1
′ ∈ c + c1 + C ′′, c1

′ ∈ C ′′,

π(c + c1 + c1
′) = πc + πc1 + πc1

′

= c + c2 + c3 + c2
′, πc1

′ = c2
′ ∈ C ′′

= c + (c2 + c3) + c2
′

∈ c + (c2 + c3) + C ′′.

Thus, π(c + c1 + C ′′) = c + (c2 + c3) + C ′′ ∈ (c + C ′)/C ′′. Therefore, {π : πE ∈
(c+C ′)/C ′′ for all E ∈ (c+C ′)/C ′′} ⊇ {ρ : ρc ∈ c+C ′, ρ ∈ Aut(C)∩Aut(C ′)∩Aut(C ′′)}.

Let π ∈ {ρ : ρE ∈ (c + C ′)/C ′′ for all E ∈ (c + C ′)/C ′′}. For any codeword

c + c1 ∈ c + C ′, c + c1 must be in either coset in (c + C ′)/C ′′, thus, π(c + c1) ∈ c + C ′′

and π ∈ Aut(C). For c+c1 +C ′′ ∈ (c+C ′)/C ′′, let c+c1 +c1
′, c+c1 +c2

′ ∈ c+c1 +C ′′.

π(c+c1 +c1
′) = πc+πc1 +πc1

′ and π(c+c1 +c2
′) = πc+πc1 +πc2

′ must be in the same

coset of c + c2 + C ′′. Hence, π ∈ Aut(C ′) and π ∈ Aut(C ′′). Therefore, {π : πE ∈ (c +

C ′)/C ′′ for all E ∈ (c+C ′)/C ′′} ⊆ {ρ : ρc ∈ c+C ′, ρ ∈ Aut(C)∩Aut(C ′)∩Aut(C ′′)}.

To partition cosets into equivalence classes, we will use permutations presented in

Lemma 19. Although Aut(C), Aut(C ′), and Aut(C ′′) are known, we need to obtain

permutations π that satisfy πc ∈ c + C ′. However, finding such permutations is difficult

in general.

6.5.3 Computing the LWD of the (256, 93) Reed-Muller Code

We will apply the invariance property to codewords in cosets for computing the local

weight distribution of Reed-Muller codes, in particular the (256, 93) third-order Reed-

Muller code.

We need to find permutations in Lemma 19 to apply the invariance property. The

permutations called binary shifts are such permutations for Reed-Muller codes.

Binary Shifts in Reed-Muller Codes

Let RMm,r denote the r-th order Reed-Muller code of length 2m. The (256, 93) third-order

Reed-Muller code is RM8,3. Since RM8,1 ⊂ RM8,2 ⊂ RM8,3, we choose RM8,2 as a subcode

C ′ and RM8,1 as C ′′. The general affine group GA(m) is an automorphism group of RMm,r.

We choose GA(8) as the permutation set Π. In [21, 38], the set of the representative cosets,
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RCGA(8)(RM8,3/RM8,2), and the numbers of the equivalent cosets, eGA(8)(D), for each

D ∈ RCGA(8)(RM8,3/RM8,2) are presented. The set of cosets RM8,3/RM8,2 is classified

into 32 equivalence classes. We will compute the local weight subdistributions for the 32

representative cosets. To compute the local weight subdistributions for each representative

coset f + RM8,2, we need to find a permutation set {ρ : ρf ∈ f + RM8,2, ρ ∈ GA(8)}
for each coset. Note that a polynomial f represents the corresponding codeword in Reed-

Muller codes.

Recall that GA(m) is the set of permutations that replace the codeword f(x1, . . . , xm)

by f (
∑

a1jxj + bj , ...,
∑

amjxj + bm), where A = (aij) is an invertible m × m binary

matrix and (b1, ..., bm) is a binary m-tuple. An affine permutation is called a binary shift

if A is the identity matrix E. Let BS(m) denote GA(m) with A = E.

The set of binary shifts is suitable for the permutation set described in Lemma 19

because, for any coset f + RM8,2, a binary shift π satisfies πf ∈ f + RM8,2 clearly. Let

CBS(v) be a set of codewords permuted by the binary shifts, that is, CBS(v) = {πv : π ∈
BS(m)}.

Lemma 20 ([15, 22]). Let f be an m-variable Boolean polynomial of degree r. For a coset

f + RMm,r−1, CBS(f) is a linear subspace of f + RMm,r−1.

Lemma 21 ([15, 22]). Let f be an m-variable Boolean polynomial of degree r, and βi ∈
BS(m) be the permutation that only replaces xi by xi + 1. For a coset f + RMm,r−1, βif

for 1 ≤ i ≤ m are bases of CBS(f).

Lemma 22. For f + RMm,r−1 ∈ RMm,r/RMm,r−1, let f + f1 + RMm,r−1 be a coset in

(f + RMm,r−1)/RMm,r−2. The local weight subdistribution of f + f1 + RMm,r−1 and that

of f + f1 + g + RMm,r−1 for any g ∈ CBS(f1) are the same.

From Lemma 22, each coset in (f + RMm,r−1)/RMm,r−2 has |CBS(f)| = 2dim(CBS (f))

equivalent cosets. Therefore, for each coset f + RMm,r−1 ∈ RMm,r/RMm,r−1, the number

of cosets in (f+RMm,r−1)/RMm,r−2 we have to compute their local weight subdistributions

will be reduced by 1/|CBS(f)|.
For the 32 representative cosets fi + RM8,2 ∈ RM8,3/RM8,2 for 1 ≤ i ≤ 32, we

computed the dimension of CBS(fi). The computation is just investigating the number

of independent vectors in candidate bases, which are presented in Lemma 21. The 32

representative cosets and the dimension of CBS(fi) is listed in Table 6.1. In this table,

we follow the notations in [22, 38]; The monomial xi1xi2xi3 is represented as i1i2i3 for

convenience. For most cases, the dimension of CBS(fi) is 8 and thus the time complexity

of computing the local weight subdistribution for fi + RM8,2 is reduced by 1/256. For
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the case that i = 1, 2, 3 (f1 = 0, f2 = x1x2x3, f3 = x1x2x3 + x2x4x5), above binary shift

set method is not very effective for their small dim(CBS(fi)). For many of fi + RM8,2

including those with i ≤ 3, we can find permutations such that πfi ∈ fi + RM8,2 because

of their simple forms of polynomials.

Borissov and Manev [8] gave another approach for determining the local weight

subdistributions for the four cosets i = 1, 2, 3 and 7. To describe their results, first we

present the necessary and sufficient condition for minimality in Reed-Muller codes. Let

Pm be the set of Boolean polynomials with m variables x1, x2, . . . , xm.

Lemma 23. For f, g ∈ Pm, if f ⊆ g then gf = f . Otherwise, gf ⊂ f .

Theorem 19. For a code C of length 2m, f ∈ C is not minimal in C if and only if there

exists g ∈ Pm such that gf ∈ C \ {0, f}.

Proof. (If part) From Lemma 23, gf 6= f means gf ⊂ f . The existence of gf ∈ C such

that gf ⊂ f leads the non-minimality of f .

(Only if part) Non-minimality of f implies the existence of f ′ ∈ C \ {0} such that f ′ ⊂ f .

Then f ′ is g because f ′f = f ′ 6= f from Lemma 23.

Corollary 6. A Boolean polynomial f ∈ RMm,r is minimal in RMm,r if and only if, for

any g ∈ RMm,r, gf /∈ RMm,r \ {0, f}.

Let’s turn to determining the local weight distribution of RM8,3.

Theorem 20 ([8]). For the coset 0 + RMm,r−1 ∈ RMm,r/RMm,r−1, any codeword in

0 + RMm,r−1 is not minimal in RMm,r.

Proof. For any codeword f ∈ 0 + RMm,r−1, we can pick a variable xi (1 ≤ i ≤ m) such

that xif 6= f because the order of f is r − 1 or less. From Theorem 19, f is not minimal

in RMm,r.

Theorem 21 ([8]). For the coset x1x2x3 +RMm,2 ∈ RMm,3/RMm,2, f ∈ x1x2x3 + RMm,2

is minimal in RMm,3 if and only if f is of the form f = (x1 +a1)(x2 +a2)(x3 +a3), where

ai ∈ {0, 1} for 1 ≤ i ≤ 3.

Proof. Let f = x1x2x3 + f ′ with f ∈ RMm,2.

In the case f ′ contains xi (4 ≤ i ≤ m), we can pick up a variable xj(1 ≤ j ≤ 3) such

that xjf
′ 6= f ′. Then xjf = x1x2x3 + xjf

′ 6= f and xjf 6= 0. xjf ∈ RMm,r because the

order of xjf is 3 or less. From Theorem 19, f is not minimal in RMm,3.
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In the case f ′ contains only xi (1 ≤ i ≤ 3), if f is of the form f = (x1 + a1)(x2 +

a2)(x3 + a3), ai ∈ {0, 1}, then xjf = f or xjf = 0 for j (1 ≤ j ≤ 3). Otherwise, we can

pick j such that xjf 6= f , xjf 6= 0 and xjf ∈ RMm,3. In this case, f is not minimal in

RMm,3.

Theorem 22 ([8]). For the coset x1x2x3 + x2x4x5 + RMm,2 ∈ RMm,3/RMm,2, suppose

f = x1x2x3 + x2x4x5 + f ′ ∈ x1x2x3 + x2x4x5 + RMm,2. Then f is not minimal in RMm,3

except for the following two cases:

1) f is of the form f = x2((x1x3 + x4x5) + g), where g is a first-order Boolean polyno-

mial.

2) f is of the form f = (x2 + 1)((x1x3 + x4x5) + g), where g is a first-order Boolean

polynomial.

Proof. x2f = f for the case 1) and x2f = 0 for the case 2). Except for these two cases,

x2f 6= f , x2f 6= 0, and x2f ∈ RMm,3. Thus f is not minimal in RMm,3 except for the two

cases.

A similar argument to Theorem 22 can be applied to the coset x1x2x7 + x3x4x7 +

x5x6x7 + RMm,2 and the same result holds for it.

From Theorem 20, there is no minimal codeword in 0 +RMm,8,2. From Theorem 21,

the local weight subdistribution for x1x2x3 + RMm,8,2 is determined immediately because

the codewords of the form f = (x1 + a1)(x2 + a2)(x3 + a3) have the minimum weight and

they are minimal codewords in RMm,8,3. For the coset x1x2x3+x2x4x5+RMm,2, codewords

for which one should check minimality are restricted to two cases, which are described

in Theorem 22. There are only 2m patterns for a polynomial g in both cases. Checking

minimality for these 2 · 2m codewords determines the local weight subdistribution for this

coset.

6.6 Tables of LWDs

The local weight distributions determined by using the relations and the algorithms pre-

sented in Chapters 5 and 6 are listed. The local weight distributions of the (128, k)

extended primitive BCH codes for k ≤ 50, those of the (127, k) primitive BCH codes for

k = 36, 43, 50, and those of the third-order Reed-Muller codes of length 128 and 256 are

presented in Tables 6.2, 6.3, 6.4, respectively.
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The local weight distributions of the (128, k) extended primitive BCH codes for

k = 8, 15, 22, 29 are immediately determined from their weight distribution because of

Proposition 2. The distribution for k = 36, 43, 50 are determined by the algorithm pro-

posed in this chapter. It took about 440 hours (CPU time) to compute the distribution

of the (128, 50) code with a 1.6 GHz Opteron processor. In this case, the (128, 29) code is

used as the subcode, and it took only one minute to partition cosets into the equivalence

classes.

The local weight distributions of the (127, k) primitive BCH codes are determined

from those of the corresponding extended codes by Theorems 13. Note that Ni(C) in

Theorem 13 is equal to zero for all i in these cases.

The local weight distributions of the third-order Reed-Muller codes are determined

by the algorithms presented in this chapter. For the (128, 64) third-order Reed-Muller

code, the (128, 29) second-order Reed-Muller code is used as a sublinear code. The rep-

resentative codewords of cosets for this case are presented in [21]. A method of obtaining

the number of equivalent cosets are presented in [38]. Thus, the process of obtaining

the representative cosets and the number of equivalent cosets are different from that for

extended primitive BCH codes. Note that the computing time for this process is vanish-

ingly small. The local weight distribution of the (256, 93) third-order Reed-Muller code

is determined by a method described in Section 6.5.3.

The local weight distributions of the punctured third-order Reed-Muller codes of

length 127 and 255 are determined from those of the corresponding Reed-Muller codes by

Theorems 13.

Although the tables are not listed, the local weight distributions of the even weight

subcodes of the (127, k) primitive BCH codes for k ≤ 50 and the punctured Reed-Muller

code of length 127, 255 are determined from Theorem 12.

6.7 Concluding Remarks

The local weight distributions of some primitive BCH codes, extended primitive BCH

codes, Reed-Muller codes, punctured Reed-Muller codes, and even weight subcodes of

primitive BCH codes and punctured Reed-Muller codes are determined by using the

algorithms presented in this chapter and the relations presented in Chapter 5. It is

known that the local weight distribution gives tighter upper bound than the usual union

bounds using the weight distribution on the error probability after ML decoding over

AWGNC.
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Yasuda et al. [41, 42] studied on what bounds the local weight distribution can be

substituted for the weight distribution and how good the bounds given by the local weight

distribution are. They showed that the Séguin lower bound [36] and the Poltyrev upper

bound [32] can be improved by using the local weight distributions instead for the weight

distributions. Experimental results for some primitive BCH codes, Hamming codes, Golay

codes, and Reed-Muller codes showed that the Séguin bound is somewhat improved, in

particular for high-rate codes, but the Poltyrev bound is little improved. Since the differ-

ence between the local weight distribution and the weight distribution is large if the code

rate is high as seen in the results for random linear codes, the improvements of the bounds

will be large for high rate. However, for a fixed code length, the complexity of computing

the local weight distribution is larger for codes of higher rate. Besides, to the local weight

distribution, we cannot simply apply the MacWilliams identity [25], which is used for

determining the weight distribution for high-rate codes from those of the corresponding

low-rate dual codes. Therefore, it is desirable to develop a method of computing the local

weight distribution of high-rate codes. For cyclic codes, an algorithm for computing the

local weight distribution effective for high-rate one was proposed in [29]. This algorithm

is based on the algorithm proposed in [5]. Since the size of cyclic permutations is not

large, an algorithm for computing the local weight distribution is desirable for high-rate

codes that are closed under large automorphism groups.



6.7 Concluding Remarks 83

Table 6.1: The dimension of CBS(fi) for representative coset fi + RM8,2 ∈ RM8,3/RM8,2

i fi dim(CBS(fi))

1 0 0

2 123 3

3 123+245 5

4 123+456 6

5 123+245+346 6

6 123+145+246+356+456 6

7 127+347+567 7

8 123+456+147 7

9 123+245+346+147 7

10 123+456+147+257 7

11 123+145+246+356+456+167 7

12 123+145+246+356+456+167+247 7

13 123+456+178 8

14 123+456+178+478 8

15 123+245+678+147 8

16 123+245+346+378 8

17 123+145+246+356+456+178 8

18 123+145+246+356+456+167+238 8

19 123+145+246+356+456+158+237+678 8

20 123+145+246+356+456+278+347+168 8

21 145+246+356+456+278+347+168+237+147 8

22 123+234+345+456+567+678+128+238+348+458+568+178 8

23 123+145+246+356+456+167+578 8

24 123+145+246+356+456+167+568 8

25 123+145+246+356+456+167+348 8

26 123+456+147+257+268+278+348 8

27 123+456+147+257+168+178+248+358 8

28 127+347+567+258+368 8

29 123+456+147+368 8

30 123+456+147+368+578 8

31 123+456+147+368+478+568 8

32 123+456+147+168+258+348 8
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Table 6.2: The local weight distributions of the (128, k) extended primitive BCH codes.

k = 8 k = 22 k = 29

i |Li| i |Li| i |Li|
64 254 48 42 672 44 373 888

56 877 824 48 2 546 096

64 2 353 310 52 16 044 672

k = 15 72 877 824 56 56 408 320

i |Li| 80 42 672 60 116 750 592

56 8 192 64 152 623 774

64 16 638 68 116 750 592

72 8 192 72 56 408 320

76 16 044 672

80 2 546 096

84 373 888

k = 36 k = 43 k = 50

i |Li| i |Li| i |Li|
32 10 668 32 124 460 28 186 944

36 16 256 36 8 810 752 32 19 412 204

40 2 048 256 40 263 542 272 36 113 839 296

44 35 551 872 44 4 521 151 232 40 33 723 852 288

48 353 494 848 48 44 899 876 672 44 579 267 441 920

52 2 028 114 816 52 262 118 734 080 48 5 744 521 082 944

56 7 216 135 936 56 915 924 097 536 52 33 558 415 333 632

60 14 981 968 512 60 1 931 974 003 456 56 117 224 645 074 752

64 19 484 132 736 64 2 476 669 858 944 60 247 311 270 037 888

68 14 981 968 512 68 1 931 944 645 120 64 316 973 812 770 944

72 7 216 127 808 72 915 728 180 224 68 247 074 613 401 728

76 2 028 114 816 76 261 375 217 152 72 115 408 474 548 096

80 348 203 520 80 43 168 588 288 76 25 844 517 328 896

84 35 551 872 84 2 464 897 280

88 2 048 256
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Table 6.3: The local weight distributions of the (127, k) primitive BCH codes.

k = 36 k = 43 k = 50

i |Li| i |Li| i |Li|
31 2 667 31 31 115 27 40 894

32 8 001 32 93 345 28 146 050

35 4 572 35 2 478 024 31 4 853 051

36 11 684 36 6 332 728 32 14 559 153

39 640 080 39 82 356 960 35 310 454 802

40 1 408 176 40 181 185 312 36 793 384 494

43 12 220 956 43 1 554 145 736 39 10 538 703 840

44 23 330 916 44 2 967 005 496 40 23 185 148 448

47 132 560 568 47 16 837 453 752 43 199 123 183 160

48 220 934 280 48 28 062 422 920 44 380 144 258 760

51 823 921 644 51 106 485 735 720 47 2 154 195 406 104

52 1 204 193 172 52 155 632 998 360 48 3 590 325 676 840

55 3 157 059 472 55 400 716 792 672 51 13 633 106 229 288

56 4 059 076 464 56 515 207 304 864 52 19 925 309 104 344

59 7 022 797 740 59 905 612 814 120 55 51 285 782 220 204

60 7 959 170 772 60 1 026 361 189 336 56 65 938 862 854 548

63 9 742 066 368 63 1 238 334 929 472 59 115 927 157 830 260

64 9 742 066 368 64 1 238 334 929 472 60 131 384 112 207 628

67 7 959 170 772 67 1 026 345 592 720 63 158 486 906 385 472

68 7 022 797 740 68 905 599 052 400 64 158 486 906 385 472

71 4 059 071 892 71 515 097 101 376 67 131 258 388 369 668

72 3 157 055 916 72 400 631 078 848 68 115 816 225 032 060

75 1 204 193 172 75 155 191 535 184 71 64 917 266 933 304

76 823 921 644 76 106 183 681 968 72 50 491 207 614 792

79 217 627 200 79 26 980 367 680 75 15 345 182 164 032

80 130 576 320 80 16 188 220 608 76 10 499 335 164 864

83 23 330 916 83 1 617 588 840

84 12 220 956 84 847 308 440

87 1 408 176

88 640 080
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Table 6.4: The local weight distributions of the (n, k) third-order Reed-Muller code.

(128, 64) (256, 93)

i |Li| i |Li|
16 94 488 32 777 240

24 74 078 592 48 2 698 577 280

28 3 128 434 688 56 304 296 714 240

32 311 574 557 952 64 74 957 481 580 800

36 18 125 860 315 136 68 707 415 842 488 320

40 551 965 599 940 608 72 28 055 013 884 190 720

44 9 482 818 340 782 080 76 764 244 915 168 215 040

48 93 680 095 610 142 720 80 20 661 780 862 988 697 600

52 538 097 941 223 571 456 84 414 411 510 493 363 568 640

56 1 752 914 038 641 131 520 88 6 266 129 424 660 312 883 200

60 2 787 780 190 808 309 760 92 71 773 299 826 457 585 909 760

64 517 329 044 342 046 720 96 627 671 368 441 418 233 282 560

100 4 208 996 769 021 096 823 357 440

104 21 729 928 024 588 603 285 831 680

108 86 666 048 822 136 825 068 912 640

112 267 785 773 787 841 625 294 110 720

116 642 456 218 534 940 726 012 149 760

120 1 198 819 482 820 829 207 341 301 760

124 1 741 767 435 501 050 021 239 848 960

128 1 971 038 877 022 035 145 182 412 800

132 1 735 627 864 909 747 949 509 017 600

136 1 184 951 930 170 762 649 130 762 240

140 620 824 077 435 771 999 611 781 120

144 242 710 219 348 184 804 622 336 000

148 65 293 324 137 047 881 521 561 600

152 8 982 921 659 842 430 396 006 400



Chapter 7

Conclusion

7.1 Summary of the Work

In this dissertation, the error correction capabilities of binary linear codes are investigated.

Chapter 1 introduces the problems tackled in the dissertation. The basic definitions and

properties of linear codes are provided in Chapter 2.

In Chapter 3, the monotone error structure and its related concept larger halves are

used for the analysis of the error correctabilities beyond half the minimum distance. For

the first-order Reed-Muller codes, the number of correctable and uncorrectable errors of

weight half the minimum distance and half the minimum distance plus one is determined.

Also the weight distribution of the minimal uncorrectable errors is derived.

In Chapter 4, the monotone error structure and trial sets are used for the analysis of

the error correctabilities. For general linear codes, sufficient conditions under which any

trial set contains all the minimum weight codewords are given and are actually satisfied

for long Reed-Muller codes and some BCH codes. In addition, for the codes satisfying the

sufficient conditions, the lower bounds on the number of uncorrectable errors of weight

half the minimum distance is derived. It is shown that the lower bound asymptotically

coincides with the corresponding upper bound for Reed-Muller codes and random linear

codes.

Chapters 3 and 4 show the usefulness of the monotone error structure and its related

notions, larger halves and trial sets, for the error performance analysis of the code. In

particular, for the first-order Reed-Muller codes, a simple analysis is given for the error

correctability on half the minimum distance. For general linear codes, a nontrivial lower

bound on the error correctability on half the minimum distance is derived via trial sets

for codes.

87
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In Chapter 5, the relations between the local weight distributions of a code, its

extended code, and its even weight subcode is revealed.

In Chapter 6, an algorithm for computing the local weight distribution is proposed.

The main ideas of the algorithm are the invariance property of minimal codewords and the

coset partitioning. By considering the code tree structure and the invariance property

in cosets, the time-complexity of the algorithm is improved. By using the proposed

algorithm, the local weight distributions are determined for the third-order (256, 93) and

(128, 64) Reed-Muller codes and the (128, 36), (128, 43), and (128, 50) extended primitive

BCH codes. From the local weight distributions obtained by the proposed algorithm

and the relations between a code, its extended code, and its even weight subcode from

Chapter 5, the local weight distributions are determined for the (255, 93) and (127, 64)

punctured Reed-Muller code, the (127, 36), (127, 43), and (127, 50) extended primitive

BCH codes, and the even weight subcodes of them.

Chapters 5 and 6 develop some methods of determining the local weight distributions

for basic codes. However, the distributions obtained in this work are not effective for

the improvements of the error probabilities over AWGNC as reported in [42, 41]. The

improvements of the probabilities are effective for high-rate codes. Although the codes

whose local weight distributions obtained in this work are not high-rate codes, the relations

presented in Chapter 5 are not confined to high-rate codes and hence general. If the local

weight distribution of some high-rate code is determined, the local weight distribution of

the corresponding extended code and even weight subcode can be determined using the

relations in Chapter 5.

7.2 Future Directions

In Section 4.5, a lower bound on the uncorrectable errors of weight half the minimum

distance for the codes satisfying some condition. That condition is general and simple,

which is composed of the minimum distance and the number of minimum weight (and

plus one) codewords. Therefore, a generalization of the results to the weights greater than

half the minimum distance without too restrictive conditions is a good problem.

A trial set for a code can be used for the minimum distance decoding. However, no

nontrivial upper bound on the complexity of the trial set decoding is given so far. The

trial set decoding is a type of gradient-like decoding, which includes the minimal codeword

decoding. From the results of the size of minimum trial sets presented in Section 4.3, the

size of a minimum trial set is smaller than that of minimal codewords. Thus, the decoding
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complexity of the trial set decoding seems to be less than that of the minimal codeword

decoding. Any asymptotic analysis or simulation result is desirable.

For a method of determining the local weight distribution, as noted in Section 6.7,

an algorithm for computing the local weight distribution of high-rate codes is desirable,

since the bounds on the error probabilities given by the local weight distribution are tight

for high-rate codes.
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